IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v168y2016i3d10.1007_s10957-015-0824-7.html
   My bibliography  Save this article

Guaranteed Collision Avoidance for Autonomous Systems with Acceleration Constraints and Sensing Uncertainties

Author

Listed:
  • Erick J. Rodríguez-Seda

    (U.S. Naval Academy)

  • Dušan M. Stipanović

    (University of Illinois)

  • Mark W. Spong

    (University of Texas)

Abstract

A set of cooperative and noncooperative collision avoidance strategies for a pair of interacting agents with acceleration constraints, bounded sensing uncertainties, and limited sensing ranges is presented. We explicitly consider the case in which position information from the other agent is unreliable, and develop bounded control inputs using Lyapunov-based analysis, that guarantee collision-free trajectories for both agents. The proposed avoidance control strategies can be appended to any other stable control law (i.e., main control objective) and are active only when the agents are close to each other. As an application, we study in detail the synthesis of the avoidance strategies with a set-point stabilization control law and prove that the agents converge to the desired configurations while avoiding collisions and deadlocks (i.e., unwanted local minima). Simulation results are presented to validate the proposed control formulation.

Suggested Citation

  • Erick J. Rodríguez-Seda & Dušan M. Stipanović & Mark W. Spong, 2016. "Guaranteed Collision Avoidance for Autonomous Systems with Acceleration Constraints and Sensing Uncertainties," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 1014-1038, March.
  • Handle: RePEc:spr:joptap:v:168:y:2016:i:3:d:10.1007_s10957-015-0824-7
    DOI: 10.1007/s10957-015-0824-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0824-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0824-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Tarnopolskaya & N. Fulton, 2010. "Synthesis of Optimal Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Turn Capabilities," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 367-390, February.
    2. H. Gonzalez & E. Polak, 2010. "On the Perpetual Collision-Free RHC of Fleets of Vehicles," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 76-92, April.
    3. T. Tarnopolskaya & N. Fulton & H. Maurer, 2012. "Synthesis of Optimal Bang–Bang Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Linear Speeds," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 115-144, October.
    4. E. Pawłuszewicz & D. F. M. Torres, 2010. "Avoidance Control on Time Scales," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 527-542, June.
    5. A. Miele & T. Wang, 2006. "Optimal Trajectories and Guidance Schemes for Ship Collision Avoidance," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuan Sun & Sifa Zheng & Yulin Ma & Duanfeng Chu & Junru Yang & Yuncheng Zhou & Yicheng Li & Tingxuan Xu, 2021. "An active safety control method of collision avoidance for intelligent connected vehicle based on driving risk perception," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1249-1269, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Tarnopolskaya & N. Fulton & H. Maurer, 2012. "Synthesis of Optimal Bang–Bang Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Linear Speeds," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 115-144, October.
    2. A. Miele & T. Wang & J. A. Mathwig & M. Ciarcià, 2010. "Collision Avoidance for an Aircraft in Abort Landing: Trajectory Optimization and Guidance," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 233-254, August.
    3. Johannes O. Royset, 2016. "Preface," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 713-718, June.
    4. Maksim Buzikov & Andrey Galyaev, 2023. "The Game of Two Identical Cars: An Analytical Description of the Barrier," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 988-1018, September.
    5. Alireza Rangrazjeddi & Andrés D. González & Kash Barker, 2023. "Applied Game Theory to Enhance Air Traffic Control in 3D Airspace," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 1125-1154, March.
    6. T. Tarnopolskaya & N. Fulton, 2009. "Optimal Cooperative Collision Avoidance Strategy for Coplanar Encounter: Merz’s Solution Revisited," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 355-375, February.
    7. T. Tarnopolskaya & N. Fulton, 2010. "Synthesis of Optimal Control for Cooperative Collision Avoidance for Aircraft (Ships) with Unequal Turn Capabilities," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 367-390, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:168:y:2016:i:3:d:10.1007_s10957-015-0824-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.