IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v28y2017i4d10.1007_s10845-015-1041-9.html
   My bibliography  Save this article

Coordinated scheduling of the transfer lots in an assembly-type supply chain: a genetic algorithm approach

Author

Listed:
  • Tülin İnkaya

    (Uludağ University)

  • Mehmet Akansel

    (Uludağ University)

Abstract

In this study, we consider coordinated scheduling of the transfer lots in an assembly-type supply chain. An assembly-type supply chain consists of at least two stages, where the upstream stages manufacture the components for several products to be assembled at the downstream stages. In order to enable faster flow of products through the supply chain and to decrease the work-in-process inventory, the concept of lot streaming is used as a means of supply chain coordination. We introduce a mathematical model, which finds the optimal transfer lot sizes in the supply chain. The objective is the minimization of the sum of weighted flow and inventory costs. We develop genetic algorithm (GA) based heuristics to solve the proposed model efficiently. The experimental results show that the proposed GA-based approaches provide acceptable results in reasonable amount of time. We also show that coordination with lot streaming provides improvements in the supply chain performance.

Suggested Citation

  • Tülin İnkaya & Mehmet Akansel, 2017. "Coordinated scheduling of the transfer lots in an assembly-type supply chain: a genetic algorithm approach," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 1005-1015, April.
  • Handle: RePEc:spr:joinma:v:28:y:2017:i:4:d:10.1007_s10845-015-1041-9
    DOI: 10.1007/s10845-015-1041-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1041-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1041-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. N. Potts & S. V. Sevast'janov & V. A. Strusevich & L. N. Van Wassenhove & C. M. Zwaneveld, 1995. "The Two-Stage Assembly Scheduling Problem: Complexity and Approximation," Operations Research, INFORMS, vol. 43(2), pages 346-355, April.
    2. Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
    3. Thomas, Douglas J. & Griffin, Paul M., 1996. "Coordinated supply chain management," European Journal of Operational Research, Elsevier, vol. 94(1), pages 1-15, October.
    4. Arshinder & Kanda, Arun & Deshmukh, S.G., 2008. "Supply chain coordination: Perspectives, empirical studies and research directions," International Journal of Production Economics, Elsevier, vol. 115(2), pages 316-335, October.
    5. Zhi-Long Chen & Nicholas G. Hall, 2007. "Supply Chain Scheduling: Conflict and Cooperation in Assembly Systems," Operations Research, INFORMS, vol. 55(6), pages 1072-1089, December.
    6. Kim, Seung-Lae & Ha, Daesung, 2003. "A JIT lot-splitting model for supply chain management: Enhancing buyer-supplier linkage," International Journal of Production Economics, Elsevier, vol. 86(1), pages 1-10, October.
    7. Liming Yao & Subhash C. Sarin, 2014. "Multiple-Lot Lot Streaming in a Two-stage Assembly System," International Series in Operations Research & Management Science, in: P. Simin Pulat & Subhash C. Sarin & Reha Uzsoy (ed.), Essays in Production, Project Planning and Scheduling, edition 127, chapter 15, pages 357-388, Springer.
    8. Kalir, Adar A. & Sarin, Subhash C., 2000. "Evaluation of the potential benefits of lot streaming in flow-shop systems," International Journal of Production Economics, Elsevier, vol. 66(2), pages 131-142, June.
    9. Yeung, Wing-Kwan & Choi, Tsan-Ming & Cheng, T.C.E., 2011. "Supply chain scheduling and coordination with dual delivery modes and inventory storage cost," International Journal of Production Economics, Elsevier, vol. 132(2), pages 223-229, August.
    10. Maloni, Michael J. & Benton, W.C., 1997. "Supply chain partnerships: Opportunities for operations research," European Journal of Operational Research, Elsevier, vol. 101(3), pages 419-429, September.
    11. U. Manoj & Jatinder Gupta & Sushil Gupta & Chelliah Sriskandarajah, 2008. "Supply chain scheduling: Just-in-time environment," Annals of Operations Research, Springer, vol. 161(1), pages 53-86, July.
    12. Zhi-Long Chen & Guruprasad Pundoor, 2006. "Order Assignment and Scheduling in a Supply Chain," Operations Research, INFORMS, vol. 54(3), pages 555-572, June.
    13. Sawik, Tadeusz, 2009. "Coordinated supply chain scheduling," International Journal of Production Economics, Elsevier, vol. 120(2), pages 437-451, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaoting Chen & Huanting Chen, 2022. "Analysis and modeling of supply chain management of fresh products based on genetic algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 405-414, March.
    2. Zhen Wang & Qianwang Deng & Like Zhang & Xiaoyan Liu, 2023. "Integrated scheduling of production, inventory and imperfect maintenance based on mutual feedback of supplier and demander in distributed environment," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3445-3467, December.
    3. Anderson Rogério Faia Pinto & Marcelo Seido Nagano, 2020. "Genetic algorithms applied to integration and optimization of billing and picking processes," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 641-659, March.
    4. Niloy J. Mukherjee & Subhash C. Sarin & Daniel A. Neira, 2023. "Lot streaming for a two-stage assembly system in the presence of handling costs," Journal of Scheduling, Springer, vol. 26(4), pages 335-351, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ba-Yi & Leung, Joseph Y-T. & Li, Kai, 2017. "Integrated scheduling on a batch machine to minimize production, inventory and distribution costs," European Journal of Operational Research, Elsevier, vol. 258(1), pages 104-112.
    2. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    3. Sawik, Tadeusz, 2009. "Coordinated supply chain scheduling," International Journal of Production Economics, Elsevier, vol. 120(2), pages 437-451, August.
    4. B.‐Y. Cheng & J.Y.‐T. Leung & K. Li & S.‐L. Yang, 2015. "Single batch machine scheduling with deliveries," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 470-482, September.
    5. Liang Tang & Zhihong Jin & Xuwei Qin & Ke Jing, 2019. "Supply chain scheduling in a collaborative manufacturing mode: model construction and algorithm design," Annals of Operations Research, Springer, vol. 275(2), pages 685-714, April.
    6. Esaignani Selvarajah & Rui Zhang, 2014. "Supply chain scheduling to minimize holding costs with outsourcing," Annals of Operations Research, Springer, vol. 217(1), pages 479-490, June.
    7. Yuan Zhang & Jinjiang Yuan, 2021. "A note on the complexity of two supply chain scheduling problems," Journal of Scheduling, Springer, vol. 24(4), pages 447-454, August.
    8. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    9. Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2013. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries for multiple customers in supply chains," European Journal of Operational Research, Elsevier, vol. 228(2), pages 345-357.
    10. Chung‐Lun Li & Wen‐Qiang Xiao, 2004. "Lot streaming with supplier–manufacturer coordination," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 522-542, June.
    11. Nicholas G. Hall & Zhixin Liu, 2010. "Capacity Allocation and Scheduling in Supply Chains," Operations Research, INFORMS, vol. 58(6), pages 1711-1725, December.
    12. Zhi-Long Chen & Nicholas G. Hall, 2007. "Supply Chain Scheduling: Conflict and Cooperation in Assembly Systems," Operations Research, INFORMS, vol. 55(6), pages 1072-1089, December.
    13. Gao, Su & Qi, Lian & Lei, Lei, 2015. "Integrated batch production and distribution scheduling with limited vehicle capacity," International Journal of Production Economics, Elsevier, vol. 160(C), pages 13-25.
    14. Agnetis, Alessandro & Aloulou, Mohamed Ali & Fu, Liang-Liang, 2014. "Coordination of production and interstage batch delivery with outsourced distribution," European Journal of Operational Research, Elsevier, vol. 238(1), pages 130-142.
    15. Glock, Christoph H., 2012. "The joint economic lot size problem: A review," International Journal of Production Economics, Elsevier, vol. 135(2), pages 671-686.
    16. Averbakh, Igor, 2010. "On-line integrated production-distribution scheduling problems with capacitated deliveries," European Journal of Operational Research, Elsevier, vol. 200(2), pages 377-384, January.
    17. Esaignani Selvarajah & George Steiner, 2009. "Approximation Algorithms for the Supplier's Supply Chain Scheduling Problem to Minimize Delivery and Inventory Holding Costs," Operations Research, INFORMS, vol. 57(2), pages 426-438, April.
    18. Jun Pei & Xinbao Liu & Panos M. Pardalos & Wenjuan Fan & Ling Wang & Shanlin Yang, 2016. "Solving a supply chain scheduling problem with non-identical job sizes and release times by applying a novel effective heuristic algorithm," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(4), pages 765-776, March.
    19. Kathryn E. Stecke & Xuying Zhao, 2007. "Production and Transportation Integration for a Make-to-Order Manufacturing Company with a Commit-to-Delivery Business Mode," Manufacturing & Service Operations Management, INFORMS, vol. 9(2), pages 206-224, September.
    20. Masten, Kurt A. & Kim, Seung-Lae, 2015. "So many mechanisms, so little action: The case for 3rd party supply chain coordination," International Journal of Production Economics, Elsevier, vol. 168(C), pages 13-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:4:d:10.1007_s10845-015-1041-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.