IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v28y2017i1d10.1007_s10845-014-0964-x.html
   My bibliography  Save this article

Solving a fuzzy multi objective model of a production–distribution system using meta-heuristic based approaches

Author

Listed:
  • Sasan Khalifehzadeh

    (Islamic Azad University)

  • Mehdi Seifbarghy

    (Islamic Azad University)

  • Bahman Naderi

    (Kharazmi University)

Abstract

This paper studies a multi-objective production–distribution system. The objectives are to minimize total costs and maximize the reliability of transportations system. Each transportation system is assumed to be of unique reliability. In the real world, some parameters may be of vagueness; therefore, some tools such as fuzzy logic is applied to tackle with. The problem is formulated using a mixed integer programming model. Commercial software can optimally solve small sized instances. We propose two novel HEURISTICS called ranking genetic algorithm (RGA) and concessive variable neighborhood search (CVNS) in order to solve the large sized instances. RGA utilizes various crossover operators and compares their performances so that better crossover operators are used during the solution process. CVNS applies several neighborhood search structures with a novel learning procedure. The heuristics can recognize which neighborhood structure performs well and applies those more than the others. The results indicated that RGA is of higher performance.

Suggested Citation

  • Sasan Khalifehzadeh & Mehdi Seifbarghy & Bahman Naderi, 2017. "Solving a fuzzy multi objective model of a production–distribution system using meta-heuristic based approaches," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 95-109, January.
  • Handle: RePEc:spr:joinma:v:28:y:2017:i:1:d:10.1007_s10845-014-0964-x
    DOI: 10.1007/s10845-014-0964-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-0964-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-0964-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lejeune, M.A., 2006. "A variable neighborhood decomposition search method for supply chain management planning problems," European Journal of Operational Research, Elsevier, vol. 175(2), pages 959-976, December.
    2. Amorim, P. & Günther, H.-O. & Almada-Lobo, B., 2012. "Multi-objective integrated production and distribution planning of perishable products," International Journal of Production Economics, Elsevier, vol. 138(1), pages 89-101.
    3. Olli Bräysy, 2003. "A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 347-368, November.
    4. Pokharel, Shaligram, 2008. "A two objective model for decision making in a supply chain," International Journal of Production Economics, Elsevier, vol. 111(2), pages 378-388, February.
    5. Lee, Sunghee & Kim, Daeki, 2014. "An optimal policy for a single-vendor single-buyer integrated production–distribution model with both deteriorating and defective items," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 161-170.
    6. Mirzapour Al-e-hashem, S.M.J. & Malekly, H. & Aryanezhad, M.B., 2011. "A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty," International Journal of Production Economics, Elsevier, vol. 134(1), pages 28-42, November.
    7. Sourirajan, Karthik & Ozsen, Leyla & Uzsoy, Reha, 2009. "A genetic algorithm for a single product network design model with lead time and safety stock considerations," European Journal of Operational Research, Elsevier, vol. 197(2), pages 599-608, September.
    8. Wang, Reay-Chen & Fang, Hsiao-Hua, 2001. "Aggregate production planning with multiple objectives in a fuzzy environment," European Journal of Operational Research, Elsevier, vol. 133(3), pages 521-536, September.
    9. Jawahar, N. & Balaji, A.N., 2009. "A genetic algorithm for the two-stage supply chain distribution problem associated with a fixed charge," European Journal of Operational Research, Elsevier, vol. 194(2), pages 496-537, April.
    10. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    11. Selim, Hasan & Araz, Ceyhun & Ozkarahan, Irem, 2008. "Collaborative production-distribution planning in supply chain: A fuzzy goal programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 396-419, May.
    12. Zimmerman, H. -J., 1983. "Using fuzzy sets in operational research," European Journal of Operational Research, Elsevier, vol. 13(3), pages 201-216, July.
    13. Mansouri, S. Afshin, 2005. "A Multi-Objective Genetic Algorithm for mixed-model sequencing on JIT assembly lines," European Journal of Operational Research, Elsevier, vol. 167(3), pages 696-716, December.
    14. Raa, Birger & Dullaert, Wout & Aghezzaf, El-Houssaine, 2013. "A matheuristic for aggregate production–distribution planning with mould sharing," International Journal of Production Economics, Elsevier, vol. 145(1), pages 29-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Vincent F. & Le, Thi Huynh Anh & Gupta, Jatinder N.D., 2022. "Sustainable microgrid design with multiple demand areas and peer-to-peer energy trading involving seasonal factors and uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    2. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "Tactical supply chain planning models with inherent flexibility: definition and review," Annals of Operations Research, Springer, vol. 244(2), pages 407-427, September.
    3. Rihab Khemiri & Khaoula Elbedoui-Maktouf & Bernard Grabot & Belhassen Zouari, 2017. "A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning," Post-Print hal-01758604, HAL.
    4. Mohammed, Ahmed & Wang, Qian, 2017. "The fuzzy multi-objective distribution planner for a green meat supply chain," International Journal of Production Economics, Elsevier, vol. 184(C), pages 47-58.
    5. Emenike, Scholastica N. & Falcone, Gioia, 2020. "A review on energy supply chain resilience through optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    7. Yasser A. Davizón & César Martínez-Olvera & Rogelio Soto & Carlos Hinojosa & Piero Espino-Román, 2015. "Optimal Control Approaches to the Aggregate Production Planning Problem," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    8. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "A tactical supply chain planning model with multiple flexibility options: an empirical evaluation," Annals of Operations Research, Springer, vol. 244(2), pages 429-454, September.
    9. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing, 2017. "An enhanced robustness approach for managing supply and demand uncertainties," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 620-631.
    10. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2020. "Tactical sales and operations planning: A holistic framework and a literature review of decision-making models," International Journal of Production Economics, Elsevier, vol. 228(C).
    11. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    12. Ensafian, Hamidreza & Yaghoubi, Saeed, 2017. "Robust optimization model for integrated procurement, production and distribution in platelet supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 32-55.
    13. Srikant Gupta & Irfan Ali & Aquil Ahmed, 2018. "Multi-objective bi-level supply chain network order allocation problem under fuzziness," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 721-748, November.
    14. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    15. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    16. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    17. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    18. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    19. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    20. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:1:d:10.1007_s10845-014-0964-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.