IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v31y2025i1d10.1007_s10732-024-09545-y.html
   My bibliography  Save this article

A Q-learning-based algorithm for the block relocation problem

Author

Listed:
  • Liqun Liu

    (University of Leeds)

  • Yuanjun Feng

    (University of Liverpool)

  • Qingcheng Zeng

    (Dalian Maritime University)

  • Zhijun Chen

    (Wuhan University of Technology)

  • Yaqiu Li

    (Hiroshima University)

Abstract

The Block Relocation Problem (BRP), also known as the Container Relocation Problem, is a challenging combinatorial optimization problem in block stacking systems and has many applications in real-world scenarios such as logistics and manufacturing industry. The BRP is about finding the optimal way to retrieve blocks from a storage area with the objective of minimizing the number of relocations. The BRPs have been studied for a long time, and have been solved primarily using conventional optimization techniques, including mathematical programming models, as well as both exact and heuristic algorithms. For the first time, this paper tackles the problem using a reinforcement learning method. We focus on one of the major variants of the BRP—the restricted BRP with duplicate priorities (RBRP-dup). We first model the RBRP-dup as a Markov decision process and then propose a Q-learning-based algorithm to solve the problem. The Q-learning-based algorithm contains two phases. In the learning phase, two innovative mechanisms: an optimal rule-integrated behaviour policy and a heuristic-based dynamic initialization method, are incorporated into the Q-learning model to reduce the size of the state-action space and accelerate convergence. In the optimization phase, the insights obtained in the learning phase are combined with a heuristic algorithm to improve decision-making. The performance of our proposed method is evaluated against the state-of-the-art exact algorithm and a commonly used heuristic algorithm based on benchmark instances from the literature. The computational experiments demonstrate the superiority of our proposed method regarding solution quality in large and complex instances.

Suggested Citation

  • Liqun Liu & Yuanjun Feng & Qingcheng Zeng & Zhijun Chen & Yaqiu Li, 2025. "A Q-learning-based algorithm for the block relocation problem," Journal of Heuristics, Springer, vol. 31(1), pages 1-41, March.
  • Handle: RePEc:spr:joheur:v:31:y:2025:i:1:d:10.1007_s10732-024-09545-y
    DOI: 10.1007/s10732-024-09545-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-024-09545-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-024-09545-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Bo & Zhu, Wenbin & Lim, Andrew, 2015. "Solving the container relocation problem by an improved greedy look-ahead heuristic," European Journal of Operational Research, Elsevier, vol. 240(3), pages 837-847.
    2. Petering, Matthew E.H. & Hussein, Mazen I., 2013. "A new mixed integer program and extended look-ahead heuristic algorithm for the block relocation problem," European Journal of Operational Research, Elsevier, vol. 231(1), pages 120-130.
    3. M. Hakan Akyüz & Chung‐Yee Lee, 2014. "A mathematical formulation and efficient heuristics for the dynamic container relocation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 101-118, March.
    4. Zehendner, Elisabeth & Feillet, Dominique & Jaillet, Patrick, 2017. "An algorithm with performance guarantee for the Online Container Relocation Problem," European Journal of Operational Research, Elsevier, vol. 259(1), pages 48-62.
    5. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    6. Caserta, Marco & Schwarze, Silvia & Voß, Stefan, 2012. "A mathematical formulation and complexity considerations for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 219(1), pages 96-104.
    7. Bacci, Tiziano & Mattia, Sara & Ventura, Paolo, 2020. "A branch-and-cut algorithm for the restricted Block Relocation Problem," European Journal of Operational Research, Elsevier, vol. 287(2), pages 452-459.
    8. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.
    9. Bortfeldt, Andreas & Forster, Florian, 2012. "A tree search procedure for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 217(3), pages 531-540.
    10. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    11. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    12. Filom, Siyavash & Amiri, Amir M. & Razavi, Saiedeh, 2022. "Applications of machine learning methods in port operations – A systematic literature review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    13. Zhang, Yuchang & Bai, Ruibin & Qu, Rong & Tu, Chaofan & Jin, Jiahuan, 2022. "A deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertainties," European Journal of Operational Research, Elsevier, vol. 300(2), pages 418-427.
    14. Zhang, Canrong & Wang, Qi & Yuan, Guoping, 2023. "Novel models and algorithms for location assignment for outbound containers in container terminals," European Journal of Operational Research, Elsevier, vol. 308(2), pages 722-737.
    15. Silva, Marcos de Melo da & Erdoğan, Güneş & Battarra, Maria & Strusevich, Vitaly, 2018. "The Block Retrieval Problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 931-950.
    16. Zhang, Canrong & Guan, Hao & Yuan, Yifei & Chen, Weiwei & Wu, Tao, 2020. "Machine learning-driven algorithms for the container relocation problem," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 102-131.
    17. Zehendner, Elisabeth & Caserta, Marco & Feillet, Dominique & Schwarze, Silvia & Voß, Stefan, 2015. "An improved mathematical formulation for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 245(2), pages 415-422.
    18. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    19. Lixin Tang & Wei Jiang & Jiyin Liu & Yun Dong, 2015. "Research into container reshuffling and stacking problems in container terminal yards," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 751-766, July.
    20. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    21. Tanaka, Shunji & Voß, Stefan, 2022. "An exact approach to the restricted block relocation problem based on a new integer programming formulation," European Journal of Operational Research, Elsevier, vol. 296(2), pages 485-503.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Xie, Ying, 2022. "Service fairness and value of customer information for the stochastic container relocation problem under flexible service policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    2. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    3. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    4. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    5. Alf Kimms & Fabian Wilschewski, 2023. "A new modeling approach for the unrestricted block relocation problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1071-1111, December.
    6. Tanaka, Shunji & Voß, Stefan, 2022. "An exact approach to the restricted block relocation problem based on a new integer programming formulation," European Journal of Operational Research, Elsevier, vol. 296(2), pages 485-503.
    7. Tanaka, Shunji & Voß, Stefan, 2019. "An exact algorithm for the block relocation problem with a stowage plan," European Journal of Operational Research, Elsevier, vol. 279(3), pages 767-781.
    8. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    9. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.
    10. Andresson Silva Firmino & Ricardo Martins Abreu Silva & Valéria Cesário Times, 2019. "A reactive GRASP metaheuristic for the container retrieval problem to reduce crane’s working time," Journal of Heuristics, Springer, vol. 25(2), pages 141-173, April.
    11. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
    12. Huiling Zhu & Mingjun Ji & Wenwen Guo & Qingbin Wang & Yongzhi Yang, 2019. "Mathematical formulation and heuristic algorithm for the block relocation and loading problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 333-351, June.
    13. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    14. Boge, Sven & Goerigk, Marc & Knust, Sigrid, 2020. "Robust optimization for premarshalling with uncertain priority classes," European Journal of Operational Research, Elsevier, vol. 287(1), pages 191-210.
    15. Kap Hwan Kim & Sanghyuk Yi, 2021. "Utilizing information sources to reduce relocation of inbound containers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(4), pages 726-749, December.
    16. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    17. Huiling Zhu, 2022. "Integrated Containership Stowage Planning: A Methodology for Coordinating Containership Stowage Plan and Terminal Yard Operations," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    18. Zweers, Bernard G. & Bhulai, Sandjai & van der Mei, Rob D., 2020. "Optimizing pre-processing and relocation moves in the Stochastic Container Relocation Problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 954-971.
    19. Ting, Ching-Jung & Wu, Kun-Chih, 2017. "Optimizing container relocation operations at container yards with beam search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 17-31.
    20. V. Galle & V. H. Manshadi & S. Borjian Boroujeni & C. Barnhart & P. Jaillet, 2018. "The Stochastic Container Relocation Problem," Transportation Science, INFORMS, vol. 52(5), pages 1035-1058, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:31:y:2025:i:1:d:10.1007_s10732-024-09545-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.