IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v283y2020i3p954-971.html
   My bibliography  Save this article

Optimizing pre-processing and relocation moves in the Stochastic Container Relocation Problem

Author

Listed:
  • Zweers, Bernard G.
  • Bhulai, Sandjai
  • van der Mei, Rob D.

Abstract

In container terminals, containers are often moved to other stacks in order to access containers that need to leave the terminal earlier. We propose a new optimization model in which the containers can be moved in two different phases: a pre-processing and a relocation phase. To solve this problem, we develop an optimal branch-and-bound algorithm. Furthermore, we develop a local search heuristic because the problem is NP-hard. Besides that, we give a rule-based method to estimate the number of relocation moves in a bay. The local search heuristic produces solutions that are close to the optimal solution. Finally, for instances in which the benefits of moving containers in the two different phases are in balance, the solution of the heuristic yields significant improvement compared to the existing methods in which containers are only moved in one of the two phases.

Suggested Citation

  • Zweers, Bernard G. & Bhulai, Sandjai & van der Mei, Rob D., 2020. "Optimizing pre-processing and relocation moves in the Stochastic Container Relocation Problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 954-971.
  • Handle: RePEc:eee:ejores:v:283:y:2020:i:3:p:954-971
    DOI: 10.1016/j.ejor.2019.11.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719309798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.11.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "Integer programming models for the pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 142-154.
    2. Ku, Dusan & Arthanari, Tiru S., 2016. "Container relocation problem with time windows for container departure," European Journal of Operational Research, Elsevier, vol. 252(3), pages 1031-1039.
    3. Andresson Silva Firmino & Ricardo Martins Abreu Silva & Valéria Cesário Times, 2019. "A reactive GRASP metaheuristic for the container retrieval problem to reduce crane’s working time," Journal of Heuristics, Springer, vol. 25(2), pages 141-173, April.
    4. V. Galle & V. H. Manshadi & S. Borjian Boroujeni & C. Barnhart & P. Jaillet, 2018. "The Stochastic Container Relocation Problem," Transportation Science, INFORMS, vol. 52(5), pages 1035-1058, October.
    5. M. Hakan Akyüz & Chung‐Yee Lee, 2014. "A mathematical formulation and efficient heuristics for the dynamic container relocation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 101-118, March.
    6. Joachim Scholl & David Boywitz & Nils Boysen, 2018. "On the quality of simple measures predicting block relocations in container yards," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 60-71, January.
    7. Kevin Tierney & Dario Pacino & Stefan Voß, 2017. "Solving the pre-marshalling problem to optimality with A* and IDA," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 223-259, June.
    8. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    9. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    10. Caserta, Marco & Schwarze, Silvia & Voß, Stefan, 2012. "A mathematical formulation and complexity considerations for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 219(1), pages 96-104.
    11. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.
    12. Raka Jovanovic & Milan Tuba & Stefan Voß, 2017. "A multi-heuristic approach for solving the pre-marshalling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 1-28, March.
    13. Tanaka, Shunji & Tierney, Kevin, 2018. "Solving real-world sized container pre-marshalling problems with an iterative deepening branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 264(1), pages 165-180.
    14. Bortfeldt, Andreas & Forster, Florian, 2012. "A tree search procedure for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 217(3), pages 531-540.
    15. Zhao, Wenjuan & Goodchild, Anne V., 2010. "The impact of truck arrival information on container terminal rehandling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 327-343, May.
    16. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    17. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    18. Ji, Mingjun & Guo, Wenwen & Zhu, Huiling & Yang, Yongzhi, 2015. "Optimization of loading sequence and rehandling strategy for multi-quay crane operations in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 1-19.
    19. Zehendner, Elisabeth & Caserta, Marco & Feillet, Dominique & Schwarze, Silvia & Voß, Stefan, 2015. "An improved mathematical formulation for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 245(2), pages 415-422.
    20. Raka Jovanovic & Shunji Tanaka & Tatsushi Nishi & Stefan Voß, 2019. "A GRASP approach for solving the Blocks Relocation Problem with Stowage Plan," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 702-729, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    2. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    3. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
    4. Huiling Zhu, 2022. "Integrated Containership Stowage Planning: A Methodology for Coordinating Containership Stowage Plan and Terminal Yard Operations," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    5. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    2. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    3. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    4. Tanaka, Shunji & Voß, Stefan, 2019. "An exact algorithm for the block relocation problem with a stowage plan," European Journal of Operational Research, Elsevier, vol. 279(3), pages 767-781.
    5. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén & Tierney, Kevin, 2020. "Minimizing crane times in pre-marshalling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    6. Maniezzo, Vittorio & Boschetti, Marco A. & Gutjahr, Walter J., 2021. "Stochastic premarshalling of block stacking warehouses," Omega, Elsevier, vol. 102(C).
    7. Boge, Sven & Goerigk, Marc & Knust, Sigrid, 2020. "Robust optimization for premarshalling with uncertain priority classes," European Journal of Operational Research, Elsevier, vol. 287(1), pages 191-210.
    8. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    9. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    10. Ting, Ching-Jung & Wu, Kun-Chih, 2017. "Optimizing container relocation operations at container yards with beam search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 17-31.
    11. Huiling Zhu & Mingjun Ji & Wenwen Guo & Qingbin Wang & Yongzhi Yang, 2019. "Mathematical formulation and heuristic algorithm for the block relocation and loading problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 333-351, June.
    12. de Melo da Silva, Marcos & Toulouse, Sophie & Wolfler Calvo, Roberto, 2018. "A new effective unified model for solving the Pre-marshalling and Block Relocation Problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 40-56.
    13. Jiménez-Piqueras, Celia & Ruiz, Rubén & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon, 2023. "A constraint programming approach for the premarshalling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 668-678.
    14. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Parreño, Francisco, 2022. "A beam search algorithm for minimizing crane times in premarshalling problems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1063-1078.
    15. Silva, Marcos de Melo da & Erdoğan, Güneş & Battarra, Maria & Strusevich, Vitaly, 2018. "The Block Retrieval Problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 931-950.
    16. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    17. Tanaka, Shunji & Tierney, Kevin & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "A branch and bound approach for large pre-marshalling problems," European Journal of Operational Research, Elsevier, vol. 278(1), pages 211-225.
    18. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "A new binary formulation of the restricted Container Relocation Problem based on a binary encoding of configurations," European Journal of Operational Research, Elsevier, vol. 267(2), pages 467-477.
    19. Raka Jovanovic & Shunji Tanaka & Tatsushi Nishi & Stefan Voß, 2019. "A GRASP approach for solving the Blocks Relocation Problem with Stowage Plan," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 702-729, September.
    20. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:283:y:2020:i:3:p:954-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.