IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v24y2018i2d10.1007_s10732-018-9365-1.html
   My bibliography  Save this article

Pareto local search algorithms for the multi-objective beam angle optimisation problem

Author

Listed:
  • Guillermo Cabrera-Guerrero

    () (Pontificia Universidad Católica de Valparaíso
    University of Auckland)

  • Andrew J. Mason

    () (University of Auckland)

  • Andrea Raith

    () (University of Auckland)

  • Matthias Ehrgott

    () (Lancaster University Management School)

Abstract

Due to inherent trade-offs between tumour control and sparing of organs at risk, optimisation problems arising in intensity modulated radiation therapy planning are naturally modelled as multi-objective optimisation problems. Nevertheless, the vast majority of studies in the literature consider single objective approaches to these problems. The beam angle optimisation problem, that we address ion this paper, is one of these problems. It attempts to identify “good” beam angle configurations that allow the delivery of efficient treatment plans. In this paper two bi-objective local search algorithms are developed for the bi-objective beam angle optimisation problem, namely Pareto local search (PLS) and a variation of PLS we call adaptive PLS (aPLS). Both algorithms are able to find a set of (approximately) efficient beam angle configurations. While the PLS algorithm aims to find a set of efficient BACs by performing a very focused search over a specific region of the objective space, the aPLS algorithm aims to produce a set of efficient BACs that are well-distributed over the objective space. We test both algorithms on two prostate cancer cases and compare them to our previously proposed single objective local search algorithm.

Suggested Citation

  • Guillermo Cabrera-Guerrero & Andrew J. Mason & Andrea Raith & Matthias Ehrgott, 2018. "Pareto local search algorithms for the multi-objective beam angle optimisation problem," Journal of Heuristics, Springer, vol. 24(2), pages 205-238, April.
  • Handle: RePEc:spr:joheur:v:24:y:2018:i:2:d:10.1007_s10732-018-9365-1
    DOI: 10.1007/s10732-018-9365-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-018-9365-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joana Dias & Humberto Rocha & Brígida Ferreira & Maria Lopes, 2014. "A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 431-455, September.
    2. Hao Howard Zhang & Leyuan Shi & Robert Meyer & Daryl Nazareth & Warren D'Souza, 2009. "Solving Beam-Angle Selection and Dose Optimization Simultaneously via High-Throughput Computing," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 427-444, August.
    3. Misic, V.V. & Aleman, D.M. & Sharpe, M.B., 2010. "Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT," European Journal of Operational Research, Elsevier, vol. 205(3), pages 522-527, September.
    4. Lim, Gino J. & Cao, Wenhua, 2012. "A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search," European Journal of Operational Research, Elsevier, vol. 217(3), pages 609-618.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gino Lim & Laleh Kardar & Wenhua Cao, 2014. "A hybrid framework for optimizing beam angles in radiation therapy planning," Annals of Operations Research, Springer, vol. 217(1), pages 357-383, June.
    2. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    3. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    4. H. Rocha & J. Dias & B. Ferreira & M. Lopes, 2013. "Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework," Journal of Global Optimization, Springer, vol. 57(4), pages 1065-1089, December.
    5. Yasin Gocgun, 2018. "Simulation-based approximate policy iteration for dynamic patient scheduling for radiation therapy," Health Care Management Science, Springer, vol. 21(3), pages 317-325, September.
    6. Gerhard Weber & Jacek Blazewicz & Marion Rauner & Metin Türkay, 2014. "Recent advances in computational biology, bioinformatics, medicine, and healthcare by modern OR," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 427-430, September.
    7. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.
    8. Joana Dias & Humberto Rocha & Brígida Ferreira & Maria Lopes, 2014. "A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 431-455, September.
    9. Zhenyuan Liu & Lei Xiao & Jing Tian, 2016. "An activity-list-based nested partitions algorithm for resource-constrained project scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4744-4758, August.
    10. Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.
    11. Aydin Azizi, 2017. "Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing," Complexity, Hindawi, vol. 2017, pages 1-18, June.
    12. Zaghian, Maryam & Lim, Gino J. & Khabazian, Azin, 2018. "A chance-constrained programming framework to handle uncertainties in radiation therapy treatment planning," European Journal of Operational Research, Elsevier, vol. 266(2), pages 736-745.
    13. Qiushi Chen & Lei Zhao & Jan C. Fransoo & Zhe Li, 2019. "Dual-mode inventory management under a chance credit constraint," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 147-178, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:24:y:2018:i:2:d:10.1007_s10732-018-9365-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.