IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v57y2013i4p1065-1089.html
   My bibliography  Save this article

Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework

Author

Listed:
  • H. Rocha
  • J. Dias
  • B. Ferreira
  • M. Lopes

Abstract

The selection of appropriate radiation incidence directions in radiation therapy treatment planning is important for the quality of the treatment plan, both for appropriate tumor coverage and for better organ sparing. The objective of this paper is to discuss the benefits of using radial basis functions within a pattern search methods framework in the optimization of the highly non-convex beam angle optimization (BAO) problem. Pattern search methods are derivative-free optimization methods that require few function value evaluations to converge and have the ability to avoid local entrapment. These two characteristics gathered together make pattern search methods suited to address the BAO problem. The pattern search methods framework is composed by a search step and a poll step at each iteration. The poll step performs a local search in a mesh neighborhood and assures convergence to a local minimizer or stationary point. The search step provides the flexibility for a global search since it allows searches away from the neighborhood of the current iterate. Radial basis functions are used and tested in this step both to influence the quality of the local minimizer found by the method and to obtain a better coverage of the search space in amplitude. A set of retrospective treated cases of head-and-neck tumors at the Portuguese Institute of Oncology of Coimbra is used to discuss the benefits of using this approach in the optimization of the BAO problem. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • H. Rocha & J. Dias & B. Ferreira & M. Lopes, 2013. "Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework," Journal of Global Optimization, Springer, vol. 57(4), pages 1065-1089, December.
  • Handle: RePEc:spr:jglopt:v:57:y:2013:i:4:p:1065-1089
    DOI: 10.1007/s10898-012-0002-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-0002-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-0002-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eva Lee & Tim Fox & Ian Crocker, 2003. "Integer Programming Applied to Intensity-Modulated Radiation Therapy Treatment Planning," Annals of Operations Research, Springer, vol. 119(1), pages 165-181, March.
    2. Felisa Preciado-Walters & Mark Langer & Ronald Rardin & Van Thai, 2006. "Column generation for IMRT cancer therapy optimization with implementable segments," Annals of Operations Research, Springer, vol. 148(1), pages 65-79, November.
    3. Gino J. Lim & Michael C. Ferris & Stephen J. Wright & David M. Shepard & Matthew A. Earl, 2007. "An Optimization Framework for Conformal Radiation Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 366-380, August.
    4. Dionne M. Aleman & H. Edwin Romeijn & James F. Dempsey, 2009. "A Response Surface Approach to Beam Orientation Optimization in Intensity-Modulated Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 62-76, February.
    5. Misic, V.V. & Aleman, D.M. & Sharpe, M.B., 2010. "Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT," European Journal of Operational Research, Elsevier, vol. 205(3), pages 522-527, September.
    6. Lim, Gino J. & Cao, Wenhua, 2012. "A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search," European Journal of Operational Research, Elsevier, vol. 217(3), pages 609-618.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dias, Luis C. & Dias, Joana & Ventura, Tiago & Rocha, Humberto & Ferreira, Brígida & Khouri, Leila & Lopes, Maria do Carmo, 2022. "Learning target-based preferences through additive models: An application in radiotherapy treatment planning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 270-279.
    2. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.
    3. Joana Dias & Humberto Rocha & Brígida Ferreira & Maria Lopes, 2014. "A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 431-455, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    2. Gino Lim & Laleh Kardar & Wenhua Cao, 2014. "A hybrid framework for optimizing beam angles in radiation therapy planning," Annals of Operations Research, Springer, vol. 217(1), pages 357-383, June.
    3. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.
    4. Guillermo Cabrera-Guerrero & Andrew J. Mason & Andrea Raith & Matthias Ehrgott, 2018. "Pareto local search algorithms for the multi-objective beam angle optimisation problem," Journal of Heuristics, Springer, vol. 24(2), pages 205-238, April.
    5. Lim, Gino J. & Cao, Wenhua, 2012. "A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search," European Journal of Operational Research, Elsevier, vol. 217(3), pages 609-618.
    6. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    7. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    8. Joana Dias & Humberto Rocha & Brígida Ferreira & Maria Lopes, 2014. "A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 431-455, September.
    9. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    10. Guillermo Cabrera-Guerrero & Matthias Ehrgott & Andrew J. Mason & Andrea Raith, 2022. "Bi-objective optimisation over a set of convex sub-problems," Annals of Operations Research, Springer, vol. 319(2), pages 1507-1532, December.
    11. Yasin Gocgun, 2018. "Simulation-based approximate policy iteration for dynamic patient scheduling for radiation therapy," Health Care Management Science, Springer, vol. 21(3), pages 317-325, September.
    12. Ali Tuncel & Felisa Preciado & Ronald Rardin & Mark Langer & Jean-Philippe Richard, 2012. "Strong valid inequalities for fluence map optimization problem under dose-volume restrictions," Annals of Operations Research, Springer, vol. 196(1), pages 819-840, July.
    13. Ehsan Salari & H. Edwin Romeijn, 2012. "Quantifying the Trade-off Between IMRT Treatment Plan Quality and Delivery Efficiency Using Direct Aperture Optimization," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 518-533, November.
    14. Mustafa Sir & Marina Epelman & Stephen Pollock, 2012. "Stochastic programming for off-line adaptive radiotherapy," Annals of Operations Research, Springer, vol. 196(1), pages 767-797, July.
    15. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    16. Misic, V.V. & Aleman, D.M. & Sharpe, M.B., 2010. "Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT," European Journal of Operational Research, Elsevier, vol. 205(3), pages 522-527, September.
    17. Eva K. Lee, 2004. "Generating Cutting Planes for Mixed Integer Programming Problems in a Parallel Computing Environment," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 3-26, February.
    18. H. Edwin Romeijn & Ravindra K. Ahuja & James F. Dempsey & Arvind Kumar, 2006. "A New Linear Programming Approach to Radiation Therapy Treatment Planning Problems," Operations Research, INFORMS, vol. 54(2), pages 201-216, April.
    19. Nicolau Andrés-Thió & Mario Andrés Muñoz & Kate Smith-Miles, 2022. "Bifidelity Surrogate Modelling: Showcasing the Need for New Test Instances," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3007-3022, November.
    20. Shabbir Ahmed & Ozan Gozbasi & Martin Savelsbergh & Ian Crocker & Tim Fox & Eduard Schreibmann, 2010. "An Automated Intensity-Modulated Radiation Therapy Planning System," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 568-583, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:57:y:2013:i:4:p:1065-1089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.