IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i2d10.1007_s10898-024-01400-5.html
   My bibliography  Save this article

On polling directions for randomized direct-search approaches: application to beam angle optimization in intensity-modulated proton therapy

Author

Listed:
  • H. Rocha

    (CeBER, Faculty of Economics)

  • J. Dias

    (INESC Coimbra, Faculty of Economics)

Abstract

Deterministic direct-search methods have been successfully used to address real-world challenging optimization problems, including the beam angle optimization (BAO) problem in radiation therapy treatment planning. BAO is a highly non-convex optimization problem typically treated as the optimization of an expensive multi-modal black-box function which results in a computationally time consuming procedure. For the recently available modalities of radiation therapy with protons (instead of photons) further efficiency in terms of computational time is required despite the success of the different strategies developed to accelerate BAO approaches. Introducing randomization into otherwise deterministic direct-search approaches has been shown to lead to excellent computational performance, particularly when considering a reduced number (as low as two) of random poll directions at each iteration. In this study several randomized direct-search strategies are tested considering different sets of polling directions. Results obtained using a prostate and a head-and-neck cancer cases confirmed the high-quality results obtained by deterministic direct-search methods. Randomized strategies using a reduced number of polling directions showed difficulties for the higher dimensional search space (head-and-neck) and, despite the excellent mean results for the prostate cancer case, outliers were observed, a result that is often ignored in the literature. While, for general global optimization problems, mean results (or obtaining the global optimum once) might be enough for assessing the performance of the randomized method, in real-world problems one should not disregard the worst-case scenario and beware of the possibility of poor results since, many times, it is only possible to run the optimization problem once. This is even more important in healthcare applications where the mean patient does not exist and the best treatment possible must be assured for every patient.

Suggested Citation

  • H. Rocha & J. Dias, 2025. "On polling directions for randomized direct-search approaches: application to beam angle optimization in intensity-modulated proton therapy," Journal of Global Optimization, Springer, vol. 91(2), pages 371-392, February.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:2:d:10.1007_s10898-024-01400-5
    DOI: 10.1007/s10898-024-01400-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01400-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01400-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joana Dias & Humberto Rocha & Brígida Ferreira & Maria Lopes, 2014. "A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 431-455, September.
    2. Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.
    3. S. Gratton & C. W. Royer & L. N. Vicente & Z. Zhang, 2019. "Direct search based on probabilistic feasible descent for bound and linearly constrained problems," Computational Optimization and Applications, Springer, vol. 72(3), pages 525-559, April.
    4. H. Rocha & J. Dias & B. Ferreira & M. Lopes, 2013. "Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework," Journal of Global Optimization, Springer, vol. 57(4), pages 1065-1089, December.
    5. Gino Lim & Laleh Kardar & Wenhua Cao, 2014. "A hybrid framework for optimizing beam angles in radiation therapy planning," Annals of Operations Research, Springer, vol. 217(1), pages 357-383, June.
    6. Lim, Gino J. & Cao, Wenhua, 2012. "A two-phase method for selecting IMRT treatment beam angles: Branch-and-Prune and local neighborhood search," European Journal of Operational Research, Elsevier, vol. 217(3), pages 609-618.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Freitas, Juliana Campos & Cantane, Daniela Renata & Rocha, Humberto & Dias, Joana, 2024. "A multiobjective beam angle optimization framework for intensity-modulated radiation therapy," European Journal of Operational Research, Elsevier, vol. 318(1), pages 286-296.
    2. Guillermo Cabrera-Guerrero & Andrew J. Mason & Andrea Raith & Matthias Ehrgott, 2018. "Pareto local search algorithms for the multi-objective beam angle optimisation problem," Journal of Heuristics, Springer, vol. 24(2), pages 205-238, April.
    3. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    4. Dias, Luis C. & Dias, Joana & Ventura, Tiago & Rocha, Humberto & Ferreira, Brígida & Khouri, Leila & Lopes, Maria do Carmo, 2022. "Learning target-based preferences through additive models: An application in radiotherapy treatment planning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 270-279.
    5. Marc C. Robini & Feng Yang & Yuemin Zhu, 2020. "A stochastic approach to full inverse treatment planning for charged-particle therapy," Journal of Global Optimization, Springer, vol. 77(4), pages 853-893, August.
    6. Joana Dias & Humberto Rocha & Brígida Ferreira & Maria Lopes, 2014. "A genetic algorithm with neural network fitness function evaluation for IMRT beam angle optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 431-455, September.
    7. Ubaldo M. García Palomares, 2023. "Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 821-856, July.
    8. Gerhard Weber & Jacek Blazewicz & Marion Rauner & Metin Türkay, 2014. "Recent advances in computational biology, bioinformatics, medicine, and healthcare by modern OR," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 427-430, September.
    9. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    10. Evren Ozbayoglu & Murat Ozbayoglu & Baris Guney Ozdilli & Oney Erge, 2021. "Optimization of Flow Rate and Pipe Rotation Speed Considering Effective Cuttings Transport Using Data-Driven Models," Energies, MDPI, vol. 14(5), pages 1-32, March.
    11. Aydin Azizi, 2017. "Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing," Complexity, Hindawi, vol. 2017, pages 1-18, June.
    12. Yudan Dou & Xiaolong Xue & Zebin Zhao & Xiaowei Luo & Ankang Ji & Ting Luo, 2018. "Multi-Index Evaluation for Flood Disaster from Sustainable Perspective: A Case Study of Xinjiang in China," IJERPH, MDPI, vol. 15(9), pages 1-20, September.
    13. H. Rocha & J. Dias & B. Ferreira & M. Lopes, 2013. "Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework," Journal of Global Optimization, Springer, vol. 57(4), pages 1065-1089, December.
    14. C. W. Royer & O. Sohab & L. N. Vicente, 2024. "Full-low evaluation methods for bound and linearly constrained derivative-free optimization," Computational Optimization and Applications, Springer, vol. 89(2), pages 279-315, November.
    15. Oylum S¸eker & Mucahit Cevik & Merve Bodur & Young Lee & Mark Ruschin, 2023. "A Multiobjective Approach for Sector Duration Optimization in Stereotactic Radiosurgery Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 248-264, January.
    16. Gino Lim & Laleh Kardar & Wenhua Cao, 2014. "A hybrid framework for optimizing beam angles in radiation therapy planning," Annals of Operations Research, Springer, vol. 217(1), pages 357-383, June.
    17. Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.
    18. Guillermo Cabrera-Guerrero & Matthias Ehrgott & Andrew J. Mason & Andrea Raith, 2022. "Bi-objective optimisation over a set of convex sub-problems," Annals of Operations Research, Springer, vol. 319(2), pages 1507-1532, December.
    19. Raith, Andrea & Ehrgott, Matthias & Fauzi, Fariza & Lin, Kuan-Min & Macann, Andrew & Rouse, Paul & Simpson, John, 2022. "Integrating Data Envelopment Analysis into radiotherapy treatment planning for head and neck cancer patients," European Journal of Operational Research, Elsevier, vol. 296(1), pages 289-303.
    20. Josefa Mula & Marija Bogataj, 2021. "OR in the industrial engineering of Industry 4.0: experiences from the Iberian Peninsula mirrored in CJOR," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1163-1184, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:2:d:10.1007_s10898-024-01400-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.