IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v22y2016i4d10.1007_s10732-015-9283-4.html
   My bibliography  Save this article

Proximity search heuristics for wind farm optimal layout

Author

Listed:
  • Martina Fischetti

    (DTU Copenhagen and Vattenfall BU Renewables)

  • Michele Monaci

    (DEI, University of Padova)

Abstract

A heuristic framework for turbine layout optimization in a wind farm is proposed that combines ad-hoc heuristics and mixed-integer linear programming. In our framework, large-scale mixed-integer programming models are used to iteratively refine the current best solution according to the recently-proposed proximity search paradigm. Computational results on very large scale instances involving up to 20,000 potential turbine sites prove the practical viability of the overall approach.

Suggested Citation

  • Martina Fischetti & Michele Monaci, 2016. "Proximity search heuristics for wind farm optimal layout," Journal of Heuristics, Springer, vol. 22(4), pages 459-474, August.
  • Handle: RePEc:spr:joheur:v:22:y:2016:i:4:d:10.1007_s10732-015-9283-4
    DOI: 10.1007/s10732-015-9283-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-015-9283-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-015-9283-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. David Pisinger & Stefan Ropke, 2010. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 399-419, Springer.
    2. Fred Glover, 1990. "Tabu Search: A Tutorial," Interfaces, INFORMS, vol. 20(4), pages 74-94, August.
    3. Matteo Fischetti & Michele Monaci & Domenico Salvagnin, 2012. "Three Ideas for the Quadratic Assignment Problem," Operations Research, INFORMS, vol. 60(4), pages 954-964, August.
    4. Kusiak, Andrew & Song, Zhe, 2010. "Design of wind farm layout for maximum wind energy capture," Renewable Energy, Elsevier, vol. 35(3), pages 685-694.
    5. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Fischetti & Jesper Runge Kristoffersen & Thomas Hjort & Michele Monaci & David Pisinger, 2020. "Vattenfall Optimizes Offshore Wind Farm Design," Interfaces, INFORMS, vol. 50(1), pages 80-94, January.
    2. Fischetti, Martina & Fischetti, Matteo & Stoustrup, Jakob, 2023. "Safe distancing in the time of COVID-19," European Journal of Operational Research, Elsevier, vol. 304(1), pages 139-149.
    3. Filipe Rodrigues & Agostinho Agra & Lars Magnus Hvattum & Cristina Requejo, 2021. "Weighted proximity search," Journal of Heuristics, Springer, vol. 27(3), pages 459-496, June.
    4. Martina Fischetti & David Pisinger, 2019. "Mathematical Optimization and Algorithms for Offshore Wind Farm Design: An Overview," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(4), pages 469-485, August.
    5. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    6. Martina Fischetti & Matteo Fischetti, 2023. "Integrated Layout and Cable Routing in Wind Farm Optimal Design," Management Science, INFORMS, vol. 69(4), pages 2147-2164, April.
    7. Cranmer, Alexana & Baker, Erin & Liesiö, Juuso & Salo, Ahti, 2018. "A portfolio model for siting offshore wind farms with economic and environmental objectives," European Journal of Operational Research, Elsevier, vol. 267(1), pages 304-314.
    8. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    9. Ding, Chengjin & Chen, Xinyuan & Wu, Weiwei & Wei, Wenbin & Xin, Zelin, 2023. "Game-theoretic analysis of the impact of crew overnight hotel cost on airlines’ fleet assignment and crew pairing," Journal of Air Transport Management, Elsevier, vol. 113(C).
    10. Cazzaro, Davide & Trivella, Alessio & Corman, Francesco & Pisinger, David, 2022. "Multi-scale optimization of the design of offshore wind farms," Applied Energy, Elsevier, vol. 314(C).
    11. Amorosi, Lavinia & Fischetti, Martina & Paradiso, Rosario & Roberti, Roberto, 2024. "Optimization models for the installation planning of offshore wind farms," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1182-1196.
    12. Yuanhang Qi & Peng Hou & Guisong Liu & Rongsen Jin & Zhile Yang & Guangya Yang & Zhaoyang Dong, 2021. "Cable Connection Optimization for Heterogeneous Offshore Wind Farms via a Voronoi Diagram Based Adaptive Particle Swarm Optimization with Local Search," Energies, MDPI, vol. 14(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martina Fischetti & Matteo Fischetti, 2023. "Integrated Layout and Cable Routing in Wind Farm Optimal Design," Management Science, INFORMS, vol. 69(4), pages 2147-2164, April.
    2. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    3. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    4. Yang, Kun & Deng, Xiaowei & Ti, Zilong & Yang, Shanghui & Huang, Senbin & Wang, Yuhang, 2023. "A data-driven layout optimization framework of large-scale wind farms based on machine learning," Renewable Energy, Elsevier, vol. 218(C).
    5. Bahman Kalantari & Ansuman Bagchi, 1990. "An algorithm for quadratic zero‐one programs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 527-538, August.
    6. Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
    7. Frison, Lilli & Kollmar, Manuel & Oliva, Axel & Bürger, Adrian & Diehl, Moritz, 2024. "Model predictive control of bidirectional heat transfer in prosumer-based solar district heating networks," Applied Energy, Elsevier, vol. 358(C).
    8. Oliver G. Czibula & Hanyu Gu & Yakov Zinder, 2018. "Planning personnel retraining: column generation heuristics," Journal of Combinatorial Optimization, Springer, vol. 36(3), pages 896-915, October.
    9. Wilson, Dennis & Rodrigues, Silvio & Segura, Carlos & Loshchilov, Ilya & Hutter, Frank & Buenfil, Guillermo López & Kheiri, Ahmed & Keedwell, Ed & Ocampo-Pineda, Mario & Özcan, Ender & Peña, Sergio Iv, 2018. "Evolutionary computation for wind farm layout optimization," Renewable Energy, Elsevier, vol. 126(C), pages 681-691.
    10. Jiaqiao Hu & Hyeong Chang & Michael Fu & Steven Marcus, 2011. "Dynamic sample budget allocation in model-based optimization," Journal of Global Optimization, Springer, vol. 50(4), pages 575-596, August.
    11. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    12. Delaet, Arne & Ramaekers, Katrien & Hirsch, Patrick & Molenbruch, Yves & Braekers, Kris, 2024. "A matheuristic for integrated medium-term home healthcare planning," European Journal of Operational Research, Elsevier, vol. 319(2), pages 543-556.
    13. Maud Bay & Yves Crama & Yves Langer & Philippe Rigo, 2010. "Space and time allocation in a shipyard assembly hall," Annals of Operations Research, Springer, vol. 179(1), pages 57-76, September.
    14. Sonja Germer & Axel Kleidon, 2019. "Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-16, February.
    15. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    16. Alexander Mitsos, 2010. "Global solution of nonlinear mixed-integer bilevel programs," Journal of Global Optimization, Springer, vol. 47(4), pages 557-582, August.
    17. Zheng, Yue & Wang, Jie-Sheng & Zhu, Jun-Hua & Zhang, Xin-Yue & Xing, Yu-Xuan & Zhang, Yun-Hao, 2024. "MORSA: Multi-objective reptile search algorithm based on elite non-dominated sorting and grid indexing mechanism for wind farm layout optimization problem," Energy, Elsevier, vol. 293(C).
    18. Yokoyama, Ryohei & Kitano, Hiroyuki & Wakui, Tetsuya, 2017. "Optimal operation of heat supply systems with piping network," Energy, Elsevier, vol. 137(C), pages 888-897.
    19. Jim Kuo & Kevin Pan & Ni Li & He Shen, 2020. "Wind Farm Yaw Optimization via Random Search Algorithm," Energies, MDPI, vol. 13(4), pages 1-15, February.
    20. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:22:y:2016:i:4:d:10.1007_s10732-015-9283-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.