IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i4d10.1007_s10898-024-01448-3.html
   My bibliography  Save this article

Constrained optimization in simulation: efficient global optimization and Karush-Kuhn-Tucker conditions

Author

Listed:
  • Jack P. C. Kleijnen

    (Tilburg University (TiU))

  • Ebru Angün

    (Galatasaray University)

  • Inneke Nieuwenhuyse

    (Hasselt University)

  • Wim C. M. Beers

Abstract

We develop a novel methodology for solving constrained optimization problems in deterministic simulation. In these problems, the goal (or objective) output is to be minimized, subject to one or more constraints for the other outputs and for the inputs. Our methododology combines the“Karush-Kuhn-Tucker”(KKT) conditions with“efficient global optimization”(EGO).These KKT conditions are well-known first-order necessary optimality conditions in white-box mathematical optimization, but our method is the first EGO method that uses these conditions. EGO is a popular type of algorithm that is closely related to“Bayesian optimization” and“active machine learning”, as they all use Gaussian processes or Kriging to approximate the input/output behavior of black-box models. We numerically compare the performance of our KKT-EGO algorithm and two alternative EGO algorithms, in several popular examples. In some examples our algorithm converges faster to the true optimum, so our algorithm may provide a suitable alternative.

Suggested Citation

  • Jack P. C. Kleijnen & Ebru Angün & Inneke Nieuwenhuyse & Wim C. M. Beers, 2025. "Constrained optimization in simulation: efficient global optimization and Karush-Kuhn-Tucker conditions," Journal of Global Optimization, Springer, vol. 91(4), pages 897-922, April.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:4:d:10.1007_s10898-024-01448-3
    DOI: 10.1007/s10898-024-01448-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01448-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01448-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen & Wim C. M. van Beers, 2022. "Statistical Tests for Cross-Validation of Kriging Models," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 607-621, January.
    2. Kleijnen, Jack P.C. & Mehdad, Ehsan, 2014. "Multivariate versus univariate Kriging metamodels for multi-response simulation models," European Journal of Operational Research, Elsevier, vol. 236(2), pages 573-582.
    3. Antanas Žilinskas & James Calvin, 2019. "Bi-objective decision making in global optimization based on statistical models," Journal of Global Optimization, Springer, vol. 74(4), pages 599-609, August.
    4. Lim, Chae Young & Wu, Wei-Ying, 2022. "Conditions on which cokriging does not do better than kriging," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    5. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anis Fradi & Chafik Samir & Ines Adouani, 2024. "A New Bayesian Approach to Global Optimization on Parametrized Surfaces in $$\mathbb {R}^{3}$$ R 3," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1077-1100, September.
    2. Ringsberg, Henrik, 2023. "Sustainable FLM transport based on IPF transport by ferry in coastal rural areas: A case from Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    3. Pata, Ugur Korkut & Kartal, Mustafa Tevfik & Erdogan, Sinan & Sarkodie, Samuel Asumadu, 2023. "The role of renewable and nuclear energy R&D expenditures and income on environmental quality in Germany: Scrutinizing the EKC and LCC hypotheses with smooth structural changes," Applied Energy, Elsevier, vol. 342(C).
    4. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    5. Liu, Jialin & Jiang, Rui & Liu, Yang & Jia, Bin & Li, Xingang & Wang, Ting, 2024. "Managing evacuation of multiclass traffic flow: Fleet configuration, lane allocation, lane reversal, and cross elimination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    6. Kleijnen, Jack & van Nieuwenhuyse, I. & van Beers, W.C.M., 2022. "Constrained Optimization in Simulation : Efficient Global Optimization and Karush-Kuhn-Tucker Conditions," Discussion Paper 2022-020, Tilburg University, Center for Economic Research.
    7. Gabriele Eichfelder & Kathrin Klamroth & Julia Niebling, 2021. "Nonconvex constrained optimization by a filtering branch and bound," Journal of Global Optimization, Springer, vol. 80(1), pages 31-61, May.
    8. Hong, Fangqi & Wei, Pengfei & Fu, Jiangfeng & Beer, Michael, 2024. "A sequential sampling-based Bayesian numerical method for reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Madison O. Campbell, 2021. "Incorporation of sea level rise in storm surge surrogate modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 531-563, January.
    10. Dawei Zhan & Jintao Wu & Huanlai Xing & Tianrui Li, 2024. "A cooperative approach to efficient global optimization," Journal of Global Optimization, Springer, vol. 88(2), pages 327-357, February.
    11. Liu, Songyue & Li, Qiusheng & Lu, Bin & He, Junyi, 2024. "Impact of incoming turbulence intensity and turbine spacing on output power density: A study with two 5MW offshore wind turbines," Applied Energy, Elsevier, vol. 371(C).
    12. Rahat, Alma A.M. & Wang, Chunlin & Everson, Richard M. & Fieldsend, Jonathan E., 2018. "Data-driven multi-objective optimisation of coal-fired boiler combustion systems," Applied Energy, Elsevier, vol. 229(C), pages 446-458.
    13. Jolan Wauters & Andy Keane & Joris Degroote, 2020. "Development of an adaptive infill criterion for constrained multi-objective asynchronous surrogate-based optimization," Journal of Global Optimization, Springer, vol. 78(1), pages 137-160, September.
    14. Nuno Costa & Paulo Fontes, 2020. "Energy-Efficiency Assessment and Improvement—Experiments and Analysis Methods," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    15. Yuan, Jun & Shi, Xunpeng & He, Junliang, 2024. "LNG market liberalization and LNG transportation: Evaluation based on fleet size and composition model," Applied Energy, Elsevier, vol. 358(C).
    16. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    17. Qiang Yang & Litao Hua & Xudong Gao & Dongdong Xu & Zhenyu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems," Mathematics, MDPI, vol. 10(5), pages 1-34, February.
    18. Binois, M. & Ginsbourger, D. & Roustant, O., 2015. "Quantifying uncertainty on Pareto fronts with Gaussian process conditional simulations," European Journal of Operational Research, Elsevier, vol. 243(2), pages 386-394.
    19. Liu, Yushan & Li, Luyi & Zhao, Sihan & Song, Shufang, 2021. "A global surrogate model technique based on principal component analysis and Kriging for uncertainty propagation of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Correia Sinézio Martins, Edlaine & Lépine, Julien & Corbett, Jacqueline, 2024. "Assessing the effectiveness of financial incentives on electric vehicle adoption in Europe: Multi-period difference-in-difference approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:4:d:10.1007_s10898-024-01448-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.