IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i2d10.1007_s10898-023-01316-6.html
   My bibliography  Save this article

A cooperative approach to efficient global optimization

Author

Listed:
  • Dawei Zhan

    (Southwest Jiaotong University)

  • Jintao Wu

    (Southwest Jiaotong University)

  • Huanlai Xing

    (Southwest Jiaotong University)

  • Tianrui Li

    (Southwest Jiaotong University)

Abstract

The efficient global optimization (EGO) algorithm is widely used for solving expensive optimization problems, but it has been frequently criticized for its incapability of solving high-dimensional problems, i.e., problems with 100 or more variables. Extending the EGO algorithm to high dimensions encounters two major challenges: the training time of the Kriging model goes up rapidly and the difficulty of solving the infill optimization problem increases exponentially as the dimension of the problem increases. In this work, we propose a simple and efficient cooperative framework to tackle these two problems simultaneously. In the proposed framework, we first randomly decompose the original high-dimensional problem into several sub-problems, and then train the Kriging model and solve the infill optimization problem for each sub-problem. Context vectors are used to link the sub-problems such that the Kriging models are trained and the infill optimization problems are solved in a cooperative way. Once all the sub-problems have been solved, we start another random decomposition again and repeat the divide-and-conquer process until the computational budget is reached. Experiment results show that the proposed cooperative approach can bring nearly linear speedup with respect to the number of sub-problems. The proposed approach also shows competitive optimization performance when compared with the standard EGO and six high-dimensional versions of EGO. This work provides an efficient and effective approach for high-dimensional expensive optimization.

Suggested Citation

  • Dawei Zhan & Jintao Wu & Huanlai Xing & Tianrui Li, 2024. "A cooperative approach to efficient global optimization," Journal of Global Optimization, Springer, vol. 88(2), pages 327-357, February.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:2:d:10.1007_s10898-023-01316-6
    DOI: 10.1007/s10898-023-01316-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01316-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01316-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivo Couckuyt & Dirk Deschrijver & Tom Dhaene, 2014. "Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization," Journal of Global Optimization, Springer, vol. 60(3), pages 575-594, November.
    2. Mickaël Binois & David Ginsbourger & Olivier Roustant, 2020. "On the choice of the low-dimensional domain for global optimization via random embeddings," Journal of Global Optimization, Springer, vol. 76(1), pages 69-90, January.
    3. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    4. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    2. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    3. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.
    4. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Pseudo expected improvement criterion for parallel EGO algorithm," Journal of Global Optimization, Springer, vol. 68(3), pages 641-662, July.
    5. Yuan, Jun & Shi, Xunpeng & He, Junliang, 2024. "LNG market liberalization and LNG transportation: Evaluation based on fleet size and composition model," Applied Energy, Elsevier, vol. 358(C).
    6. Jixiang Qing & Ivo Couckuyt & Tom Dhaene, 2023. "A robust multi-objective Bayesian optimization framework considering input uncertainty," Journal of Global Optimization, Springer, vol. 86(3), pages 693-711, July.
    7. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    8. Dellino, G. & Lino, P. & Meloni, C. & Rizzo, A., 2009. "Kriging metamodel management in the design optimization of a CNG injection system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2345-2360.
    9. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    10. Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.
    11. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    12. Fu, Quanlu & Wu, Jiyan & Wu, Xuemian & Sun, Jian & Tian, Ye, 2024. "Managing network congestion with link-based incentives: A surrogate-based optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    13. Enlu Zhou & Shalabh Bhatnagar, 2018. "Gradient-Based Adaptive Stochastic Search for Simulation Optimization Over Continuous Space," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 154-167, February.
    14. Swetlana Herbrandt & Uwe Ligges & Manuel Pinho Ferreira & Michael Kansteiner & Dirk Biermann & Wolfgang Tillmann & Claus Weihs, 2018. "Model based optimization of a statistical simulation model for single diamond grinding," Computational Statistics, Springer, vol. 33(3), pages 1127-1143, September.
    15. Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
    16. Kleijnen, Jack P.C. & Mehdad, E., 2013. "Conditional simulation for efficient global optimization," Other publications TiSEM 52e4860d-9887-4a63-b19a-7, Tilburg University, School of Economics and Management.
    17. Liu, Jialin & Jiang, Rui & Liu, Yang & Jia, Bin & Li, Xingang & Wang, Ting, 2024. "Managing evacuation of multiclass traffic flow: Fleet configuration, lane allocation, lane reversal, and cross elimination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    18. Shengguan Xu & Hongquan Chen, 2018. "Nash game based efficient global optimization for large-scale design problems," Journal of Global Optimization, Springer, vol. 71(2), pages 361-381, June.
    19. Majed Hadid & Adel Elomri & Regina Padmanabhan & Laoucine Kerbache & Oualid Jouini & Abdelfatteh El Omri & Amir Nounou & Anas Hamad, 2022. "Clustering and Stochastic Simulation Optimization for Outpatient Chemotherapy Appointment Planning and Scheduling," IJERPH, MDPI, vol. 19(23), pages 1-34, November.
    20. Kleijnen, J.P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2008. "Constrained Optimization in Simulation : A Novel Approach," Discussion Paper 2008-95, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:2:d:10.1007_s10898-023-01316-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.