IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i1d10.1007_s10898-023-01343-3.html
   My bibliography  Save this article

A surrogate-assisted evolutionary algorithm with clustering-based sampling for high-dimensional expensive blackbox optimization

Author

Listed:
  • Fusheng Bai

    (Chongqing Normal University)

  • Dongchi Zou

    (Chongqing Normal University)

  • Yutao Wei

    (Chongqing Normal University)

Abstract

Many practical problems involve the optimization of computationally expensive blackbox functions. The computational cost resulting from expensive function evaluations considerably limits the number of true objective function evaluations allowed in order to find a good solution. In this paper, we propose a clustering-based surrogate-assisted evolutionary algorithm, in which a clustering-based local search technique is embedded into the radial basis function surrogate-assisted evolutionary algorithm framework to obtain sample points which might be close to the local solutions of the actual optimization problem. The algorithm generates sample points cyclically by the clustering-based local search, which takes the cluster centers of the ultimate population obtained by the differential evolution iterations applied to the surrogate model in one cycle as new sample points, and these new sample points are added into the initial population for the differential evolution iterations of the next cycle. In this way the exploration and the exploitation are better balanced during the search process. To verify the effectiveness of the present algorithm, it is compared with four state-of-the-art surrogate-assisted evolutionary algorithms on 24 synthetic test problems and one application problem. Experimental results show that the present algorithm outperforms other algorithms on most synthetic test problems and the application problem.

Suggested Citation

  • Fusheng Bai & Dongchi Zou & Yutao Wei, 2024. "A surrogate-assisted evolutionary algorithm with clustering-based sampling for high-dimensional expensive blackbox optimization," Journal of Global Optimization, Springer, vol. 89(1), pages 93-115, May.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:1:d:10.1007_s10898-023-01343-3
    DOI: 10.1007/s10898-023-01343-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01343-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01343-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahsavani, D. & Grimvall, A., 2009. "An adaptive design and interpolation technique for extracting highly nonlinear response surfaces from deterministic models," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1173-1182.
    2. Rommel Regis & Christine Shoemaker, 2005. "Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions," Journal of Global Optimization, Springer, vol. 31(1), pages 153-171, January.
    3. Edwin R. van Dam & Bart Husslage & Dick den Hertog & Hans Melissen, 2007. "Maximin Latin Hypercube Designs in Two Dimensions," Operations Research, INFORMS, vol. 55(1), pages 158-169, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stinstra, E., 2006. "The meta-model approach for simulation-based design optimization," Other publications TiSEM 713f828a-4716-4a19-af00-e, Tilburg University, School of Economics and Management.
    2. Hoseinzade, Davood & Lakzian, Esmail & Hashemian, Ali, 2021. "A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades," Energy, Elsevier, vol. 220(C).
    3. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    4. Rennen, G., 2008. "Subset Selection from Large Datasets for Kriging Modeling," Discussion Paper 2008-26, Tilburg University, Center for Economic Research.
    5. Rommel G. Regis & Christine A. Shoemaker, 2009. "Parallel Stochastic Global Optimization Using Radial Basis Functions," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 411-426, August.
    6. Lehmann, Sebastian & Huth, Andreas, 2015. "Fast calibration of a dynamic vegetation model with minimum observation data," Ecological Modelling, Elsevier, vol. 301(C), pages 98-105.
    7. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    8. Jesús Martínez-Frutos & David Herrero-Pérez, 2016. "Kriging-based infill sampling criterion for constraint handling in multi-objective optimization," Journal of Global Optimization, Springer, vol. 64(1), pages 97-115, January.
    9. Driessen, L. & Brekelmans, R.C.M. & Gerichhausen, M. & Hamers, H.J.M. & den Hertog, D., 2006. "Why Methods for Optimization Problems with Time-Consuming Function Evaluations and Integer Variables Should Use Global Approximation Models," Other publications TiSEM 45a73d28-9fed-4b4c-a909-1, Tilburg University, School of Economics and Management.
    10. Alberto Bemporad, 2020. "Global optimization via inverse distance weighting and radial basis functions," Computational Optimization and Applications, Springer, vol. 77(2), pages 571-595, November.
    11. Liuqing Yang & Yongdao Zhou & Min-Qian Liu, 2021. "Maximin distance designs based on densest packings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 615-634, July.
    12. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    13. Juliane Müller & Robert Piché, 2011. "Mixture surrogate models based on Dempster-Shafer theory for global optimization problems," Journal of Global Optimization, Springer, vol. 51(1), pages 79-104, September.
    14. Zan Yang & Haobo Qiu & Liang Gao & Chen Jiang & Jinhao Zhang, 2019. "Two-layer adaptive surrogate-assisted evolutionary algorithm for high-dimensional computationally expensive problems," Journal of Global Optimization, Springer, vol. 74(2), pages 327-359, June.
    15. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
    16. Prescott, Philip, 2009. "Orthogonal-column Latin hypercube designs with small samples," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1191-1200, February.
    17. Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Discussion Paper 2008-104, Tilburg University, Center for Economic Research.
    18. Edwin R. van Dam & Gijs Rennen & Bart Husslage, 2009. "Bounds for Maximin Latin Hypercube Designs," Operations Research, INFORMS, vol. 57(3), pages 595-608, June.
    19. van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2007. "Bounds for Maximin Latin Hypercube Designs," Other publications TiSEM da0c15be-f18e-474e-b557-f, Tilburg University, School of Economics and Management.
    20. Crombecq, K. & Laermans, E. & Dhaene, T., 2011. "Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling," European Journal of Operational Research, Elsevier, vol. 214(3), pages 683-696, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:1:d:10.1007_s10898-023-01343-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.