IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v63y2015i3p597-629.html
   My bibliography  Save this article

PILOT, GRASP, and VNS approaches for the static balancing of bicycle sharing systems

Author

Listed:
  • Marian Rainer-Harbach
  • Petrina Papazek
  • Günther Raidl
  • Bin Hu
  • Christian Kloimüllner

Abstract

We consider a transportation problem arising in public bicycle sharing systems: To avoid rental stations to run entirely empty or full, a fleet of vehicles continuously performs tours moving bikes among stations. In the static problem variant considered in this paper, we are given initial and target fill levels for all stations, and the goal is primarily to find vehicle tours including corresponding loading instructions in order to minimize the deviations from the target fill levels. As secondary objectives we are further interested in minimizing the tours’ total duration and the overall number of loading actions. For this purpose we first propose a fast greedy construction heuristic and extend it to a PILOT method that evaluates each candidate station considered for addition to the current partial tour in a refined way by looking forward via a recursive call. Next we describe a Variable Neighborhood Descent (VND) that exploits a set of specifically designed neighborhood structures in a deterministic way to locally improve the solutions. While the VND is processing the search space of candidate routes to determine the stops for vehicles at unbalanced rental stations, the number of bikes to be loaded or unloaded at each stop is derived by an efficient method. Four alternatives are considered for this embedded procedure based on a greedy heuristic, two variants of maximum flow calculations, and linear programming. Last but not least, we investigate a general Variable Neighborhood Search (VNS) and variants of a Greedy Randomized Adaptive Search Procedure (GRASP) for further diversification and extended runs. Rigorous experiments using benchmark instances derived from a real-world scenario in Vienna with up to 700 stations document the performance of the suggested approaches and individual pros and cons. While the VNS yields the best results on instances of moderate size, a PILOT/GRASP hybrid turns out to be superior on very large instances. If solutions are required in short time, the construction heuristic or PILOT method optionally followed by VND still yield reasonable results. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Marian Rainer-Harbach & Petrina Papazek & Günther Raidl & Bin Hu & Christian Kloimüllner, 2015. "PILOT, GRASP, and VNS approaches for the static balancing of bicycle sharing systems," Journal of Global Optimization, Springer, vol. 63(3), pages 597-629, November.
  • Handle: RePEc:spr:jglopt:v:63:y:2015:i:3:p:597-629
    DOI: 10.1007/s10898-014-0147-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0147-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0147-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    2. Stefan Voßs & Andreas Fink & Cees Duin, 2005. "Looking Ahead with the Pilot Method," Annals of Operations Research, Springer, vol. 136(1), pages 285-302, April.
    3. M. W. P. Savelsbergh, 1994. "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 6(4), pages 445-454, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Sin C. & Szeto, W.Y., 2017. "A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 340-363.
    2. Neumann-Saavedra, Bruno Albert & Mattfeld, Dirk Christian & Hewitt, Mike, 2021. "Assessing the operational impact of tactical planning models for bike-sharing redistribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 216-235.
    3. Dell’Amico, Mauro & Iori, Manuel & Novellani, Stefano & Subramanian, Anand, 2018. "The Bike sharing Rebalancing Problem with Stochastic Demands," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 362-380.
    4. Bulhões, Teobaldo & Subramanian, Anand & Erdoğan, Güneş & Laporte, Gilbert, 2018. "The static bike relocation problem with multiple vehicles and visits," European Journal of Operational Research, Elsevier, vol. 264(2), pages 508-523.
    5. Bruno Albert Neumann-Saavedra & Teodor Gabriel Crainic & Bernard Gendron & Dirk Christian Mattfeld & Michael Römer, 2020. "Integrating Resource Management in Service Network Design for Bike-Sharing Systems," Transportation Science, INFORMS, vol. 54(5), pages 1251-1271, September.
    6. Philippe Olivier & Andrea Lodi & Gilles Pesant, 2022. "Measures of balance in combinatorial optimization," 4OR, Springer, vol. 20(3), pages 391-415, September.
    7. Szeto, W.Y. & Shui, C.S., 2018. "Exact loading and unloading strategies for the static multi-vehicle bike repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 176-211.
    8. Casazza, Marco & Ceselli, Alberto & Wolfler Calvo, Roberto, 2021. "A route decomposition approach for the single commodity Split Pickup and Split Delivery Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 897-911.
    9. Linfeng Li & Miyuan Shan & Ying Li & Sheng Liang, 2017. "A Dynamic Programming Model for Operation Decision-Making in Bicycle Sharing Systems under a Sustainable Development Perspective," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    10. Zhou, Yaoming & Lin, Zeyu & Guan, Rui & Sheu, Jiuh-Biing, 2023. "Dynamic battery swapping and rebalancing strategies for e-bike sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    11. Lee, Gaeun & Lee, Jun Soo & Park, Kun Soo, 2024. "Battery swapping, vehicle rebalancing, and staff routing for electric scooter sharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    12. Gleditsch, Marte D. & Hagen, Kristine & Andersson, Henrik & Bakker, Steffen J. & Fagerholt, Kjetil, 2024. "A column generation heuristic for the dynamic bicycle rebalancing problem," European Journal of Operational Research, Elsevier, vol. 317(3), pages 762-775.
    13. Ye Ding & Jiantong Zhang & Jiaqing Sun, 2022. "Branch-and-Price-and-Cut for the Heterogeneous Fleet and Multi-Depot Static Bike Rebalancing Problem with Split Load," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    14. Li, Yanfeng & Liu, Yang, 2021. "The static bike rebalancing problem with optimal user incentives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    15. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    16. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    17. Xue Bai & Ning Ma & Kwai-Sang Chin, 2022. "Hybrid Heuristic for the Multi-Depot Static Bike Rebalancing and Collection Problem," Mathematics, MDPI, vol. 10(23), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    2. Wei-Kun Chen & Liang Chen & Mu-Ming Yang & Yu-Hong Dai, 2018. "Generalized coefficient strengthening cuts for mixed integer programming," Journal of Global Optimization, Springer, vol. 70(1), pages 289-306, January.
    3. Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
    4. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    5. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    6. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    7. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    8. Okan Arslan & Ola Jabali & Gilbert Laporte, 2020. "A Flexible, Natural Formulation for the Network Design Problem with Vulnerability Constraints," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 120-134, January.
    9. S. Göttlich & A. Potschka & C. Teuber, 2019. "A partial outer convexification approach to control transmission lines," Computational Optimization and Applications, Springer, vol. 72(2), pages 431-456, March.
    10. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    11. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    12. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    13. Shu Zhang & Jeffrey W. Ohlmann & Barrett W. Thomas, 2018. "Dynamic Orienteering on a Network of Queues," Transportation Science, INFORMS, vol. 52(3), pages 691-706, June.
    14. Zhang, Shu & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2014. "A priori orienteering with time windows and stochastic wait times at customers," European Journal of Operational Research, Elsevier, vol. 239(1), pages 70-79.
    15. Franco Peschiera & Robert Dell & Johannes Royset & Alain Haït & Nicolas Dupin & Olga Battaïa, 2021. "A novel solution approach with ML-based pseudo-cuts for the Flight and Maintenance Planning problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 635-664, September.
    16. Dewil, R. & Vansteenwegen, P. & Cattrysse, D. & Van Oudheusden, D., 2015. "A minimum cost network flow model for the maximum covering and patrol routing problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 27-36.
    17. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    18. Shima Azizi & Özge Aygül & Brenton Faber & Sharon Johnson & Renata Konrad & Andrew C. Trapp, 2023. "Select, route and schedule: optimizing community paramedicine service delivery with mandatory visits and patient prioritization," Health Care Management Science, Springer, vol. 26(4), pages 719-746, December.
    19. Jose L. Walteros & Austin Buchanan, 2020. "Why Is Maximum Clique Often Easy in Practice?," Operations Research, INFORMS, vol. 68(6), pages 1866-1895, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:63:y:2015:i:3:p:597-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.