IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v4y2021i2d10.1007_s42001-020-00082-9.html
   My bibliography  Save this article

Where are we? Using Scopus to map the literature at the intersection between artificial intelligence and research on crime

Author

Listed:
  • Gian Maria Campedelli

    (University of Trento)

Abstract

Research on artificial intelligence (AI) applications has spread over many scientific disciplines. Scientists have tested the power of intelligent algorithms developed to predict (or learn from) natural, physical and social phenomena. This also applies to crime-related research problems. Nonetheless, studies that map the current state of the art at the intersection between AI and crime are lacking. What are the current research trends in terms of topics in this area? What is the structure of scientific collaboration when considering works investigating criminal issues using machine learning, deep learning, and AI in general? What are the most active countries in this specific scientific sphere? Using data retrieved from the Scopus database, this work quantitatively analyzes 692 published works at the intersection between AI and crime employing network science to respond to these questions. Results show that researchers are mainly focusing on cyber-related criminal topics and that relevant themes such as algorithmic discrimination, fairness, and ethics are considerably overlooked. Furthermore, data highlight the extremely disconnected structure of co-authorship networks. Such disconnectedness may represent a substantial obstacle to a more solid community of scientists interested in these topics. Additionally, the graph of scientific collaboration indicates that countries that are more prone to engage in international partnerships are generally less central in the network. This means that scholars working in highly productive countries (e.g. the United States, China) tend to mostly collaborate domestically. Finally, current issues and future developments within this scientific area are also discussed.

Suggested Citation

  • Gian Maria Campedelli, 2021. "Where are we? Using Scopus to map the literature at the intersection between artificial intelligence and research on crime," Journal of Computational Social Science, Springer, vol. 4(2), pages 503-530, November.
  • Handle: RePEc:spr:jcsosc:v:4:y:2021:i:2:d:10.1007_s42001-020-00082-9
    DOI: 10.1007/s42001-020-00082-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-020-00082-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-020-00082-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aaron Shapiro, 2017. "Reform predictive policing," Nature, Nature, vol. 541(7638), pages 458-460, January.
    2. Serena Barello & Guendalina Graffigna & Elena Vegni, 2012. "Patient Engagement as an Emerging Challenge for Healthcare Services: Mapping the Literature," Nursing Research and Practice, Hindawi, vol. 2012, pages 1-7, October.
    3. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
    4. Bornmann, Lutz & Leydesdorff, Loet & Walch-Solimena, Christiane & Ettl, Christoph, 2011. "Mapping excellence in the geography of science: An approach based on Scopus data," Journal of Informetrics, Elsevier, vol. 5(4), pages 537-546.
    5. Wei Zhang & Qingpu Zhang & Bo Yu & Limei Zhao, 2015. "Knowledge map of creativity research based on keywords network and co-word analysis, 1992–2011," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 1023-1038, May.
    6. Fabrizio Natale & Gianluca Fiore & Johann Hofherr, 2012. "Mapping the research on aquaculture. A bibliometric analysis of aquaculture literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 983-999, March.
    7. Quentin L. Burrell, 2003. "Predicting future citation behavior," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 372-378, March.
    8. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    9. Ding, Ying, 2011. "Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks," Journal of Informetrics, Elsevier, vol. 5(1), pages 187-203.
    10. Robert Axelrod, 1997. "Advancing the Art of Simulation in the Social Sciences," Working Papers 97-05-048, Santa Fe Institute.
    11. Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
    12. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    13. Massimo Franceschet, 2011. "Collaboration in computer science: A network science approach," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(10), pages 1992-2012, October.
    14. Bai, Xiaomei & Zhang, Fuli & Lee, Ivan, 2019. "Predicting the citations of scholarly paper," Journal of Informetrics, Elsevier, vol. 13(1), pages 407-418.
    15. Francisco José Acedo & Carmen Barroso & Cristóbal Casanueva & José Luis Galán, 2006. "Co‐Authorship in Management and Organizational Studies: An Empirical and Network Analysis," Journal of Management Studies, Wiley Blackwell, vol. 43(5), pages 957-983, July.
    16. Massimo Franceschet, 2011. "Collaboration in computer science: A network science approach," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(10), pages 1992-2012, October.
    17. Wolfgang Glänzel & András Schubert, 2005. "Domesticity and internationality in co-authorship, references and citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 65(3), pages 323-342, December.
    18. Avishag Gordon, 2007. "Transient and continuant authors in a research field: The case of terrorism," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(2), pages 213-224, August.
    19. Fahimnia, Behnam & Sarkis, Joseph & Davarzani, Hoda, 2015. "Green supply chain management: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 162(C), pages 101-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gian Maria Campedelli, 2022. "Explainable Machine Learning for Predicting Homicide Clearance in the United States," Papers 2203.04768, arXiv.org.
    2. Campedelli, Gian Maria, 2022. "Explainable machine learning for predicting homicide clearance in the United States," Journal of Criminal Justice, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sung-Seok Ko & Namuk Ko & Doyeon Kim & Hyunseok Park & Janghyeok Yoon, 2014. "Analyzing technology impact networks for R&D planning using patents: combined application of network approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 917-936, October.
    2. Ed-Dafali, Slimane & Patel, Ritesh & Iqbal, Najaf, 2023. "A bibliometric review of dividend policy literature," Research in International Business and Finance, Elsevier, vol. 65(C).
    3. Šubelj, Lovro & Fiala, Dalibor & Ciglarič, Tadej & Kronegger, Luka, 2019. "Convexity in scientific collaboration networks," Journal of Informetrics, Elsevier, vol. 13(1), pages 10-31.
    4. João M. Fernandes & Miguel P. Monteiro, 2017. "Evolution in the number of authors of computer science publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 529-539, February.
    5. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    6. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    7. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    8. Vincenza Carchiolo & Marco Grassia & Michele Malgeri & Giuseppe Mangioni, 2022. "Co-Authorship Networks Analysis to Discover Collaboration Patterns among Italian Researchers," Future Internet, MDPI, vol. 14(6), pages 1-15, June.
    9. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    10. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    11. Jeeyoung Lim & Joseph J. Kim & Sunkuk Kim, 2021. "A Holistic Review of Building Energy Efficiency and Reduction Based on Big Data," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    12. Meng Lv & Shaohong Feng, 2021. "Temporary teams: current research focus and future directions," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 1-18, February.
    13. Carlo Galli & Stefano Guizzardi, 2021. "The Effect of Article Characteristics on Citation Number in a Diachronic Dataset of the Biomedical Literature on Chronic Inflammation: An Analysis by Ensemble Machines," Publications, MDPI, vol. 9(2), pages 1-11, April.
    14. Silvia Blasi & Silvia Rita Sedita, 2022. "Mapping the emergence of a new organisational form: An exploration of the intellectual structure of the B Corp research," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(1), pages 107-123, January.
    15. Sina Hocke & Matthias Meyer & Iris Lorscheid, 2015. "Improving simulation model analysis and communication via design of experiment principles: an example from the simulation-based design of cost accounting systems," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 26(2), pages 131-155, August.
    16. Lipeng Fan & Yuefen Wang & Shengchun Ding & Binbin Qi, 2020. "Productivity trends and citation impact of different institutional collaboration patterns at the research units’ level," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1179-1196, November.
    17. Jinseok Kim & Liang Tao & Seok-Hyoung Lee & Jana Diesner, 2016. "Evolution and structure of scientific co-publishing network in Korea between 1948–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 27-41, April.
    18. Zehra Taşkın, 2021. "Forecasting the future of library and information science and its sub-fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1527-1551, February.
    19. Hu, Ya-Han & Tai, Chun-Tien & Liu, Kang Ernest & Cai, Cheng-Fang, 2020. "Identification of highly-cited papers using topic-model-based and bibliometric features: the consideration of keyword popularity," Journal of Informetrics, Elsevier, vol. 14(1).
    20. Yi Lu & Gayani Karunasena & Chunlu Liu, 2022. "A Systematic Literature Review of Non-Compliance with Low-Carbon Building Regulations," Energies, MDPI, vol. 15(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:4:y:2021:i:2:d:10.1007_s42001-020-00082-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.