IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v126y2021i2d10.1007_s11192-020-03800-2.html
   My bibliography  Save this article

Forecasting the future of library and information science and its sub-fields

Author

Listed:
  • Zehra Taşkın

    (Adam Mickiewicz University in Poznań)

Abstract

Forecasting is one of the methods applied in many studies in the library and information science (LIS) field for numerous purposes, from making predictions of the next Nobel laureates to potential technological developments. This study sought to draw a picture for the future of the LIS field and its sub-fields by analysing 97 years of publication and citation patterns. The core Web of Science indexes were used as the data source, and 123,742 articles were examined in-depth for time series analysis. The social network analysis method was used for sub-field classification. The field was divided into four sub-fields: (1) librarianship and law librarianship, (2) health information in LIS, (3) scientometrics and information retrieval and (4) management and information systems. The results of the study show that the LIS sub-fields are completely different from each other in terms of their publication and citation patterns, and all the sub-fields have different dynamics. Furthermore, the number of publications, references and citations will increase significantly in the future. It is expected that more scholars will work together. The future subjects of the LIS field show astonishing diversity from fake news to predatory journals, open government, e-learning and electronic health records. However, the findings prove that publish or perish culture will shape the field. Therefore, it is important to go beyond numbers. It can only be achieved by understanding publication and citation patterns of the field and developing research policies accordingly.

Suggested Citation

  • Zehra Taşkın, 2021. "Forecasting the future of library and information science and its sub-fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1527-1551, February.
  • Handle: RePEc:spr:scient:v:126:y:2021:i:2:d:10.1007_s11192-020-03800-2
    DOI: 10.1007/s11192-020-03800-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03800-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03800-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uijun Kwon & Youngjung Geum, 2020. "Identification of promising inventions considering the quality of knowledge accumulation: a machine learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1877-1897, December.
    2. Chaomei Chen & Fidelia Ibekwe‐SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple‐perspective cocitation analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    3. Glenn D. Walters, 2006. "Predicting subsequent citations to articles published in twelve crime-psychology journals: Author impact versus journal impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(3), pages 499-510, December.
    4. Feiyu Jiang & Zifeng Zhao & Xiaofeng Shao, 2020. "Time Series Analysis of COVID-19 Infection Curve: A Change-Point Perspective," Papers 2007.04553, arXiv.org.
    5. Hanlin You & Mengjun Li & Keith W. Hipel & Jiang Jiang & Bingfeng Ge & Hante Duan, 2017. "Development trend forecasting for coherent light generator technology based on patent citation network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 297-315, April.
    6. Anouk G. P. Claes & Marc J. K. De Ceuster, 2013. "Estimating the economics Nobel Prize laureates' achievement from their fame," Applied Economics Letters, Taylor & Francis Journals, vol. 20(9), pages 884-888, June.
    7. Quentin L. Burrell, 2003. "Predicting future citation behavior," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(5), pages 372-378, March.
    8. Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
    9. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    10. Abbasi, Alireza & Altmann, Jörn & Hossain, Liaquat, 2011. "Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures," Journal of Informetrics, Elsevier, vol. 5(4), pages 594-607.
    11. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    12. Yves Gingras & Matthew L. Wallace, 2010. "Why it has become more difficult to predict Nobel Prize winners: a bibliometric analysis of nominees and winners of the chemistry and physics prizes (1901–2007)," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 401-412, February.
    13. Henry Small, 2006. "Tracking and predicting growth areas in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(3), pages 595-610, September.
    14. Thijs Bol & Mathijs de Vaan & Arnout van de Rijt, 2018. "The Matthew effect in science funding," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(19), pages 4887-4890, May.
    15. Jonathan Adams, 2005. "Early citation counts correlate with accumulated impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 63(3), pages 567-581, June.
    16. Tim Brody & Stevan Harnad & Leslie Carr, 2006. "Earlier Web usage statistics as predictors of later citation impact," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(8), pages 1060-1072, June.
    17. Jason Priem, 2013. "Beyond the paper," Nature, Nature, vol. 495(7442), pages 437-440, March.
    18. Yuen-Hsien Tseng & Ming-Yueh Tsay, 2013. "Journal clustering of library and information science for subfield delineation using the bibliometric analysis toolkit: CATAR," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 503-528, May.
    19. Ye, Fred Y. & Rousseau, Ronald, 2008. "The power law model and total career h-index sequences," Journal of Informetrics, Elsevier, vol. 2(4), pages 288-297.
    20. Ruimin Ma, 2012. "Discovering and analyzing the intellectual structure and its evolution of LIS in China, 1998–2007," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 645-659, December.
    21. Abrishami, Ali & Aliakbary, Sadegh, 2019. "Predicting citation counts based on deep neural network learning techniques," Journal of Informetrics, Elsevier, vol. 13(2), pages 485-499.
    22. Bornmann, Lutz & Leydesdorff, Loet, 2017. "Skewness of citation impact data and covariates of citation distributions: A large-scale empirical analysis based on Web of Science data," Journal of Informetrics, Elsevier, vol. 11(1), pages 164-175.
    23. Shino Iwami & Junichiro Mori & Ichiro Sakata & Yuya Kajikawa, 2014. "Detection method of emerging leading papers using time transition," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1515-1533, November.
    24. Iñaki Bildosola & Pilar Gonzalez & Paz Moral, 2017. "An approach for modelling and forecasting research activity related to an emerging technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 557-572, July.
    25. Chaomei Chen, 2012. "Predictive effects of structural variation on citation counts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 431-449, March.
    26. Cronin, Francis J. & Parker, Edwin B. & Colleran, Elisabeth K. & Gold, Mark A., 1991. "Telecommunications infrastructure and economic growth : An analysis of causality," Telecommunications Policy, Elsevier, vol. 15(6), pages 529-535, December.
    27. Vincent Larivière & Cassidy R. Sugimoto & Blaise Cronin, 2012. "A bibliometric chronicling of library and information science's first hundred years," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(5), pages 997-1016, May.
    28. Liu, Yuxian & Rousseau, Ronald, 2008. "Definitions of time series in citation analysis with special attention to the h-index," Journal of Informetrics, Elsevier, vol. 2(3), pages 202-210.
    29. Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
    30. Vincent Larivière & Cassidy R. Sugimoto & Blaise Cronin, 2012. "A bibliometric chronicling of library and information science's first hundred years," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(5), pages 997-1016, May.
    31. Oguz K. Baskurt, 2011. "Time series analysis of publication counts of a university: what are the implications?," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(3), pages 645-656, March.
    32. Samuel Bjork & Avner Offer & Gabriel Söderberg, 2014. "Time series citation data: the Nobel Prize in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 185-196, January.
    33. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    34. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H, 2020. "Time Series Analysis and Forecast of the COVID-19 Pandemic in India using Genetic Programming," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanjun Xia & Tianrui Li & Chongshou Li, 2023. "A review of scientific impact prediction: tasks, features and methods," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 543-585, January.
    2. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    3. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    4. Mingyang Wang & Shi Li & Guangsheng Chen, 2017. "Detecting latent referential articles based on their vitality performance in the latest 2 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1557-1571, September.
    5. Lanu Kim & Jason H. Portenoy & Jevin D. West & Katherine W. Stovel, 2020. "Scientific journals still matter in the era of academic search engines and preprint archives," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1218-1226, October.
    6. Stegehuis, Clara & Litvak, Nelly & Waltman, Ludo, 2015. "Predicting the long-term citation impact of recent publications," Journal of Informetrics, Elsevier, vol. 9(3), pages 642-657.
    7. Shengzhi Huang & Jiajia Qian & Yong Huang & Wei Lu & Yi Bu & Jinqing Yang & Qikai Cheng, 2022. "Disclosing the relationship between citation structure and future impact of a publication," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 1025-1042, July.
    8. Jianhua Hou & Bili Zheng & Yang Zhang & Chaomei Chen, 2021. "How do Price medalists’ scholarly impact change before and after their awards?," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5945-5981, July.
    9. Liang Zhou & Lin Zhang & Ying Zhao & Ruoshu Zheng & Kaiwen Song, 2021. "A scientometric review of blockchain research," Information Systems and e-Business Management, Springer, vol. 19(3), pages 757-787, September.
    10. Payam Hanafizadeh & Seyedali Marjaie, 2020. "Trends and turning points of banking: a timespan view," Review of Managerial Science, Springer, vol. 14(6), pages 1183-1219, December.
    11. Lijun Li, 2023. "Big data visualisation in regional comprehensive economic partnership: a systematic review," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
    12. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
    13. Asma Hammami & Nabil Semmar, 2022. "The simplex simulation as a tool to reveal publication strategies and citation factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 319-350, January.
    14. Akella, Akhil Pandey & Alhoori, Hamed & Kondamudi, Pavan Ravikanth & Freeman, Cole & Zhou, Haiming, 2021. "Early indicators of scientific impact: Predicting citations with altmetrics," Journal of Informetrics, Elsevier, vol. 15(2).
    15. Qing Shi & Xiaoqi Sun, 2020. "A Scientometric Review of Digital Currency and Electronic Payment Research: A Network Perspective," Complexity, Hindawi, vol. 2020, pages 1-17, November.
    16. Zewen Hu & Angela Lin & Peter Willett, 2019. "Identification of research communities in cited and uncited publications using a co-authorship network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 1-19, January.
    17. Ajiferuke, Isola & Famoye, Felix, 2015. "Modelling count response variables in informetric studies: Comparison among count, linear, and lognormal regression models," Journal of Informetrics, Elsevier, vol. 9(3), pages 499-513.
    18. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    19. Shanwu Tian & Xiurui Xu & Ping Li, 2021. "Acknowledgement network and citation count: the moderating role of collaboration network," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7837-7857, September.
    20. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:2:d:10.1007_s11192-020-03800-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.