IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v37y2019i2d10.1007_s10878-018-0269-7.html
   My bibliography  Save this article

Pure Nash equilibria in restricted budget games

Author

Listed:
  • Maximilian Drees

    (University of Twente)

  • Matthias Feldotto

    (Paderborn University)

  • Sören Riechers

    (Paderborn University)

  • Alexander Skopalik

    (Paderborn University)

Abstract

In budget games, players compete over resources with finite budgets. For every resource, a player has a specific demand and as a strategy, he chooses a subset of resources. If the total demand on a resource does not exceed its budget, the utility of each player who chose that resource equals his demand. Otherwise, the budget is shared proportionally. In the general case, pure Nash equilibria (NE) do not exist for such games. In this paper, we consider the natural classes of singleton and matroid budget games with additional constraints and show that for each, pure NE can be guaranteed. In addition, we introduce a lexicographical potential function to prove that every matroid budget game has an approximate pure NE which depends on the largest ratio between the different demands of each individual player.

Suggested Citation

  • Maximilian Drees & Matthias Feldotto & Sören Riechers & Alexander Skopalik, 2019. "Pure Nash equilibria in restricted budget games," Journal of Combinatorial Optimization, Springer, vol. 37(2), pages 620-638, February.
  • Handle: RePEc:spr:jcomop:v:37:y:2019:i:2:d:10.1007_s10878-018-0269-7
    DOI: 10.1007/s10878-018-0269-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-018-0269-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-018-0269-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chien, Steve & Sinclair, Alistair, 2011. "Convergence to approximate Nash equilibria in congestion games," Games and Economic Behavior, Elsevier, vol. 71(2), pages 315-327, March.
    2. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    3. Ioannis Caragiannis & Angelo Fanelli & Nick Gravin & Alexander Skopalik, 2015. "Approximate Pure Nash Equilibria in Weighted Congestion Games," Post-Print halshs-02094622, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Feldotto & Lennart Leder & Alexander Skopalik, 2018. "Congestion games with mixed objectives," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1145-1167, November.
    2. Dominique Barth & Benjamin Cohen-Boulakia & Wilfried Ehounou, 2022. "Distributed Reinforcement Learning for the Management of a Smart Grid Interconnecting Independent Prosumers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    3. Daskalakis, Constantinos & Papadimitriou, Christos H., 2015. "Approximate Nash equilibria in anonymous games," Journal of Economic Theory, Elsevier, vol. 156(C), pages 207-245.
    4. Arnold, Tone & Wooders, Myrna, 2002. "Dynamic Club Formation with Coordination," Economic Research Papers 269414, University of Warwick - Department of Economics.
    5. Hideo Konishi, 2004. "Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters," Transportation Science, INFORMS, vol. 38(3), pages 315-330, August.
    6. Milchtaich, Igal, 2009. "Weighted congestion games with separable preferences," Games and Economic Behavior, Elsevier, vol. 67(2), pages 750-757, November.
    7. Bavly, Gilad & Heller, Yuval & Schreiber, Amnon, 2022. "Social welfare in search games with asymmetric information," Journal of Economic Theory, Elsevier, vol. 202(C).
    8. Darryl Seale & Amnon Rapoport, 2000. "Elicitation of Strategy Profiles in Large Group Coordination Games," Experimental Economics, Springer;Economic Science Association, vol. 3(2), pages 153-179, October.
    9. Zhan Wang & Jinpeng Ma & Hongwei Zhang, 2023. "Object-based unawareness: Theory and applications," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 8(1), pages 1-55, December.
    10. Corine M. Laan & Judith Timmer & Richard J. Boucherie, 2021. "Non-cooperative queueing games on a network of single server queues," Queueing Systems: Theory and Applications, Springer, vol. 97(3), pages 279-301, April.
    11. Taiyo Maeda & Shigeru Matsumoto & Tadahiko Murata, 2015. "Agent Heterogeneity and Facility Congestion," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 189-203, August.
    12. Juliane Dunkel & Andreas S. Schulz, 2008. "On the Complexity of Pure-Strategy Nash Equilibria in Congestion and Local-Effect Games," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 851-868, November.
    13. Penn, Michal & Polukarov, Maria & Tennenholtz, Moshe, 2009. "Congestion games with load-dependent failures: Identical resources," Games and Economic Behavior, Elsevier, vol. 67(1), pages 156-173, September.
    14. Holzman, Ron & Law-Yone, Nissan, 1997. "Strong Equilibrium in Congestion Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 85-101, October.
    15. Kukushkin, Nikolai S., 2018. "A universal construction generating potential games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 331-340.
    16. Le Breton, Michel & Shapoval, Alexander & Weber, Shlomo, 2021. "A game-theoretical model of the landscape theory," Journal of Mathematical Economics, Elsevier, vol. 92(C), pages 41-46.
    17. Blonski, Matthias, 2000. "Characterization of pure strategy equilibria in finite anonymous games," Journal of Mathematical Economics, Elsevier, vol. 34(2), pages 225-233, October.
    18. Kukushkin, Nikolai S., 2007. "Best response adaptation under dominance solvability," MPRA Paper 4108, University Library of Munich, Germany.
    19. Fatima Khanchouche & Samir Sbabou & Hatem Smaoui & Abderrahmane Ziad, 2024. "Nash Equilibria in Two-Resource Congestion Games with Player-Specific Payoff Functions," Games, MDPI, vol. 15(2), pages 1-10, February.
    20. Haris Aziz & Alexander Lam & Bo Li & Fahimeh Ramezani & Toby Walsh, 2023. "Proportional Fairness in Obnoxious Facility Location," Papers 2301.04340, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:37:y:2019:i:2:d:10.1007_s10878-018-0269-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.