IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v34y2017i1d10.1007_s10878-016-0064-2.html
   My bibliography  Save this article

Approximation algorithms for k-level stochastic facility location problems

Author

Listed:
  • Lucas P. Melo

    (Universidade Estadual de Campinas)

  • Flávio K. Miyazawa

    (Universidade Estadual de Campinas)

  • Lehilton L. C. Pedrosa

    (Universidade Estadual de Campinas)

  • Rafael C. S. Schouery

    (Universidade Estadual de Campinas)

Abstract

In the k-level facility location problem (FLP), we are given a set of facilities, each associated with one of k levels, and a set of clients. We have to connect each client to a chain of opened facilities spanning all levels, minimizing the sum of opening and connection costs. This paper considers the k-level stochastic FLP, with two stages, when the set of clients is only known in the second stage. There is a set of scenarios, each occurring with a given probability. A facility may be opened in any stage, however, the cost of opening a facility in the second stage depends on the realized scenario. The objective is to minimize the expected total cost. For the stage-constrained variant, when clients must be served by facilities opened in the same stage, we present a $$(4-o(1))$$ ( 4 - o ( 1 ) ) -approximation, improving on the 4-approximation by Wang et al. (Oper Res Lett 39(2):160–161, 2011) for each k. In the case with $$k=2,\,3$$ k = 2 , 3 , the algorithm achieves factors 2.56 and 2.78, resp., which improves the $$(3+\epsilon )$$ ( 3 + ϵ ) -approximation for $$k=2$$ k = 2 by Wu et al. (Theor Comput Sci 562:213–226, 2015). For the non-stage-constrained version, we give the first approximation for the problem, achieving a factor of 3.495 for the case with $$k = 2$$ k = 2 , and $$2k-1+o(1)$$ 2 k - 1 + o ( 1 ) in general.

Suggested Citation

  • Lucas P. Melo & Flávio K. Miyazawa & Lehilton L. C. Pedrosa & Rafael C. S. Schouery, 2017. "Approximation algorithms for k-level stochastic facility location problems," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 266-278, July.
  • Handle: RePEc:spr:jcomop:v:34:y:2017:i:1:d:10.1007_s10878-016-0064-2
    DOI: 10.1007/s10878-016-0064-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-016-0064-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-016-0064-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donglei Du & Xing Wang & Dachuan Xu, 2010. "An approximation algorithm for the k-level capacitated facility location problem," Journal of Combinatorial Optimization, Springer, vol. 20(4), pages 361-368, November.
    2. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. F. F. Almeida & S. V. Conceição & L. R. Pinto & B. R. P. Oliveira & L. F. Rodrigues, 2022. "Optimal sales and operations planning for integrated steel industries," Annals of Operations Research, Springer, vol. 315(2), pages 773-790, August.
    2. Arie M. C. A. Koster & Michael Poss, 2018. "Special issue on: robust combinatorial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 207-209, September.
    3. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    4. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    5. Ketabchi, Saeed & Behboodi-Kahoo, Malihe, 2015. "Augmented Lagrangian method within L-shaped method for stochastic linear programs," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 12-20.
    6. Adi Ben-Israel & Aharon Ben-Tal, 1997. "Duality and equilibrium prices in economics of uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(1), pages 51-85, February.
    7. Garoian, Lee & Conner, J. Richard & Scifres, C.J., 1987. "A Discrete Stochastic Programming Model To Estimate Optimal Burning Schedules On Rangeland," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 19(2), pages 1-8, December.
    8. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    9. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    10. Kanudia, Amit & Loulou, Richard, 1998. "Robust responses to climate change via stochastic MARKAL: The case of Quebec," European Journal of Operational Research, Elsevier, vol. 106(1), pages 15-30, April.
    11. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    12. repec:dgr:rugsom:03a14 is not listed on IDEAS
    13. John Bistline & John Weyant, 2013. "Electric sector investments under technological and policy-related uncertainties: a stochastic programming approach," Climatic Change, Springer, vol. 121(2), pages 143-160, November.
    14. Maji, Chandi Charan, 1975. "Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of deterministic and chance-constrained linear programming," ISU General Staff Papers 197501010800006381, Iowa State University, Department of Economics.
    15. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    16. Andrea Beltratti & Andrea Consiglio & Stavros Zenios, 1999. "Scenario modeling for the management ofinternational bond portfolios," Annals of Operations Research, Springer, vol. 85(0), pages 227-247, January.
    17. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    18. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    19. Silvia Araújo dos Reis & José Eugenio Leal & Antônio Márcio Tavares Thomé, 2023. "A Two-Stage Stochastic Linear Programming Model for Tactical Planning in the Soybean Supply Chain," Logistics, MDPI, vol. 7(3), pages 1-26, August.
    20. Bora Tarhan & Ignacio Grossmann & Vikas Goel, 2013. "Computational strategies for non-convex multistage MINLP models with decision-dependent uncertainty and gradual uncertainty resolution," Annals of Operations Research, Springer, vol. 203(1), pages 141-166, March.
    21. Bistline, John E., 2015. "Electric sector capacity planning under uncertainty: Climate policy and natural gas in the US," Energy Economics, Elsevier, vol. 51(C), pages 236-251.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:34:y:2017:i:1:d:10.1007_s10878-016-0064-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.