IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v43y2022i1d10.1007_s10878-021-00747-9.html
   My bibliography  Save this article

Distributionally robust maximum probability shortest path problem

Author

Listed:
  • Rashed Khanjani-Shiraz

    (University of Tabriz)

  • Ali Babapour-Azar

    (University of Tabriz)

  • Zohreh Hosseini-Noudeh

    (University of Tabriz)

  • Panos M. Pardalos

    (University of Florida)

Abstract

In this study, we discuss and develop a distributionally robust joint chance-constrained optimization model and apply it for the shortest path problem under resource uncertainty. In sch a case, robust chance constraints are approximated by constraints that can be reformulated using convex programming. Since the issue we are discussing here is of the multi-resource type, the resource related to cost is deterministic; however, we consider a robust set for other resources where covariance and mean are known. Thus, the chance-constrained problem can be expressed in terms of a cone constraint. In addition, since our problem is joint chance-constrained optimization, we can use Bonferroni approximation to divide the problem into L separate problems in order to build convex approximations of distributionally robust joint chance constraints. Finally, numerical results are presented to illustrate the rigidity of the bounds and the value of the distributionally robust approach.

Suggested Citation

  • Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
  • Handle: RePEc:spr:jcomop:v:43:y:2022:i:1:d:10.1007_s10878-021-00747-9
    DOI: 10.1007/s10878-021-00747-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00747-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00747-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zohreh Hosseini Nodeh & Ali Babapour Azar & Rashed Khanjani Shiraz & Salman Khodayifar & Panos M. Pardalos, 2020. "Joint chance constrained shortest path problem with Copula theory," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 110-140, July.
    2. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    3. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    4. Yoshio Ohtsubo, 2003. "Minimizing risk models in stochastic shortest path problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 57(1), pages 79-88, April.
    5. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    6. G. C. Calafiore & L. El Ghaoui, 2006. "On Distributionally Robust Chance-Constrained Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 1-22, July.
    7. Aharon Ben-Tal & Marc Teboulle, 1986. "Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming," Management Science, INFORMS, vol. 32(11), pages 1445-1466, November.
    8. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belleh Fontem, 2023. "Robust Chance-Constrained Geometric Programming with Application to Demand Risk Mitigation," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 765-797, May.
    2. Hosseini-Nodeh, Zohreh & Khanjani-Shiraz, Rashed & Pardalos, Panos M., 2023. "Portfolio optimization using robust mean absolute deviation model: Wasserstein metric approach," Finance Research Letters, Elsevier, vol. 54(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. Roos, Ernst & den Hertog, Dick, 2019. "Reducing conservatism in robust optimization," Other publications TiSEM ad0238cd-de7a-4366-b487-b, Tilburg University, School of Economics and Management.
    3. Seong-Cheol Kang & Theodora Brisimi & Ioannis Paschalidis, 2015. "Distribution-dependent robust linear optimization with applications to inventory control," Annals of Operations Research, Springer, vol. 231(1), pages 229-263, August.
    4. Liu, Ming & Liu, Xin & Chu, Feng & Zheng, Feifeng & Chu, Chengbin, 2019. "Distributionally robust inventory routing problem to maximize the service level under limited budget," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 190-211.
    5. Ernst Roos & Dick den Hertog, 2020. "Reducing Conservatism in Robust Optimization," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1109-1127, October.
    6. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    7. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    8. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    9. Alexander Engau, 2017. "Proper Efficiency and Tradeoffs in Multiple Criteria and Stochastic Optimization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 119-134, January.
    10. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    11. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    12. João Flávio de Freitas Almeida & Samuel Vieira Conceição & Luiz Ricardo Pinto & Ricardo Saraiva de Camargo & Gilberto de Miranda Júnior, 2018. "Flexibility evaluation of multiechelon supply chains," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-27, March.
    13. Adi Ben-Israel & Aharon Ben-Tal, 1997. "Duality and equilibrium prices in economics of uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(1), pages 51-85, February.
    14. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    15. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    16. Wu, Zhongqi & Jiang, Hui & Zhou, Yangye & Li, Haoyan, 2024. "Enhancing emergency medical service location model for spatial accessibility and equity under random demand and travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    17. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    18. Ashley M. Hou & Line A. Roald, 2022. "Data-driven tuning for chance constrained optimization: analysis and extensions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 649-682, October.
    19. Brandon Tam & Silvana M. Pesenti, 2025. "Dimension Reduction of Distributionally Robust Optimization Problems," Papers 2504.06381, arXiv.org.
    20. Ming Liu & Rongfan Liu & E Zhang & Chengbin Chu, 2022. "Eco-friendly container transshipment route scheduling problem with repacking operations," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1010-1035, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:43:y:2022:i:1:d:10.1007_s10878-021-00747-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.