Nonparametric Conditional Risk Mapping Under Heteroscedasticity
Author
Abstract
Suggested Citation
DOI: 10.1007/s13253-023-00555-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shapiro, A. & Botha, J. D., 1991. "Variogram fitting with a general class of conditionally nonnegative definite functions," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 87-96, January.
- Pilar García‐Soidán & Raquel Menezes, 2017. "Nonparametric construction of probability maps under local stationarity," Environmetrics, John Wiley & Sons, Ltd., vol. 28(3), May.
- Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hoderlein, Stefan & White, Halbert, 2012.
"Nonparametric identification in nonseparable panel data models with generalized fixed effects,"
Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
- Stefan Hoderlein & Halbert White, 2009. "Nonparametric Identification in Nonseparable Panel Data Models with Generalized Fixed Effects," Boston College Working Papers in Economics 746, Boston College Department of Economics.
- Stefan Hoderlein & Halbert White, 2009. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," CeMMAP working papers CWP33/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
- Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018.
"Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory,"
Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
- Carlos Martins-Filho & Feng Yao & Maximo Torero, 2012. "Nonparametric estimation of conditional value-at-risk and expected shortfall based on extreme value theory," Working Papers 13-05, Department of Economics, West Virginia University.
- Yanchun Jin, 2016. "Nonparametric tests for the effect of treatment on conditional variance," KIER Working Papers 948, Kyoto University, Institute of Economic Research.
- Holger Dette & Kay Pilz, 2009. "On the estimation of a monotone conditional variance in nonparametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 111-141, March.
- Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
- Xingcai Zhou & Dehan Kong & Matthew Stephen Pietrosanu & Linglong Kong & Rohana J. Karunamuni, 2024. "Empirical likelihood M‐estimation for the varying‐coefficient model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1357-1387, September.
- Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015.
"Empirical likelihood for regression discontinuity design,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
- Taisuke Otsu & Ke-Li Xu, 2011. "Empirical Likelihood for Regression Discontinuity Design," Cowles Foundation Discussion Papers 1799, Cowles Foundation for Research in Economics, Yale University.
- Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," LSE Research Online Documents on Economics 58513, London School of Economics and Political Science, LSE Library.
- Yukitoshi Matsushita & Taisuke Otsu & Ke-Li Xu, 2014. "Empirical Likelihood for Regression Discontinuity Design," STICERD - Econometrics Paper Series 573, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Otsu, Taisuke & Matsushita, Yukitoshi & Xu, Ke-Li, 2014. "Empirical likelihood for regression discontinuity design," LSE Research Online Documents on Economics 58065, London School of Economics and Political Science, LSE Library.
- Heather L. R. Tierney, 2019. "Forecasting with the Nonparametric Exclusion-from-Core Inflation Persistence Model Using Real-Time Data," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(1), pages 39-63, February.
- Holger Dette & Mareen Marchlewski & Jens Wagener, 2012. "Testing for a constant coefficient of variation in nonparametric regression by empirical processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 1045-1070, October.
- Tran, Kien C. & Tsionas, Efthymios G., 2009. "Estimation of nonparametric inefficiency effects stochastic frontier models with an application to British manufacturing," Economic Modelling, Elsevier, vol. 26(5), pages 904-909, September.
- León Beleña & Ernesto Curbelo & Luca Martino & Valero Laparra, 2024. "Second-Moment/Order Approximations by Kernel Smoothers with Application to Volatility Estimation," Mathematics, MDPI, vol. 12(9), pages 1-15, May.
- Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
- Gao, Jiti & Gijbels, Irene & Van Bellegem, Sebastien, 2008. "Nonparametric simultaneous testing for structural breaks," Journal of Econometrics, Elsevier, vol. 143(1), pages 123-142, March.
- Čížek, Pavel & Koo, Chao Hui, 2021.
"Jump-preserving varying-coefficient models for nonlinear time series,"
Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
- Cizek, Pavel & Koo, Chao, 2017. "Jump-Preserving Varying-Coefficient Models for Nonlinear Time Series," Discussion Paper 2017-017, Tilburg University, Center for Economic Research.
- Cizek, Pavel & Koo, Chao, 2017. "Jump-Preserving Varying-Coefficient Models for Nonlinear Time Series," Other publications TiSEM c849e96f-3ad1-461e-96c6-f, Tilburg University, School of Economics and Management.
- Jingxin Zhao & Heng Peng & Tao Huang, 2018. "Variance estimation for semiparametric regression models by local averaging," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 453-476, June.
- Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015.
"Nonparametric identification in panels using quantiles,"
Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
- Victor Chernozhukov & Ivan Fernandez-Val & Stefan Hoderlein & Hajo Holzmann & Whitney K. Newey, 2013. "Nonparametric identification in panels using quantiles," CeMMAP working papers 66/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Stefan Hoderlein & Whitney K. Newey, 2014. "Nonparametric identification in panels using quantiles," CeMMAP working papers CWP54/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Stefan Hoderlein & Whitney K. Newey, 2014. "Nonparametric identification in panels using quantiles," CeMMAP working papers 54/14, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Stefan Hoderlein & Hajo Holzmann & Whitney Newey, 2013. "Nonparametric Identification in Panels using Quantiles," Papers 1312.4094, arXiv.org, revised Aug 2014.
- Victor Chernozhukov & Ivan Fernandez-Val & Stefan Hoderlein & Hajo Holzmann & Whitney K. Newey, 2013. "Nonparametric identification in panels using quantiles," CeMMAP working papers CWP66/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Linton, Oliver & Mammen, Enno, 2003.
"Estimating semiparametric ARCH (8) models by kernel smoothing methods,"
LSE Research Online Documents on Economics
2187, London School of Economics and Political Science, LSE Library.
- Enno Mammen & Oliver Linton, 2004. "Estimating Semiparametric ARCH Models by Kernel Smoothing Methods," FMG Discussion Papers dp511, Financial Markets Group.
- Oliver Linton & Enno Mammen, 2003. "Estimating Semiparametric ARCH (8) Models by Kernel Smoothing Methods," STICERD - Econometrics Paper Series 453, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Biqing Cai & Dag Tjøstheim, 2015. "Nonparametric Regression Estimation for Multivariate Null Recurrent Processes," Econometrics, MDPI, vol. 3(2), pages 1-24, April.
- Cai, Zongwu & Xu, Xiaoping, 2009.
"Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
- Cai, Zongwu & Xu, Xiaoping, 2008. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1595-1608.
- Xiaoping Xu & Zongwu Cai, 2013. "Nonparametric Quantile Estimations For Dynamic Smooth Coefficient Models," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
More about this item
Keywords
Bootstrap; Conditional simulation; Local linear estimation; Bias correction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:1:d:10.1007_s13253-023-00555-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.