IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v27y2022i2d10.1007_s13253-021-00475-x.html
   My bibliography  Save this article

Estimation of Multivariate Dependence Structures via Constrained Maximum Likelihood

Author

Listed:
  • Nurudeen A. Adegoke

    (PRIMER-e (Quest Research Limited)
    Massey University)

  • Andrew Punnett

    (PRIMER-e (Quest Research Limited))

  • Marti J. Anderson

    (PRIMER-e (Quest Research Limited)
    Massey University)

Abstract

Estimating high-dimensional dependence structures in models of multivariate datasets is an ongoing challenge. Copulas provide a powerful and intuitive way to model dependence structure in the joint distribution of disparate types of variables. Here, we propose an estimation method for Gaussian copula parameters based on the maximum likelihood estimate of a covariance matrix that includes shrinkage and where all of the diagonal elements are restricted to be equal to 1. We show that this estimation problem can be solved using a numerical solution that optimizes the problem in a block coordinate descent fashion. We illustrate the advantage of our proposed scheme in providing an efficient estimate of sparse Gaussian copula covariance parameters using a simulation study. The sparse estimate was obtained by regularizing the constrained problem using either the least absolute shrinkage and selection operator (LASSO) or the adaptive LASSO penalty, applied to either the covariance matrix or the inverse covariance (precision) matrix. Simulation results indicate that our method outperforms conventional estimates of sparse Gaussian copula covariance parameters. We demonstrate the proposed method for modelling dependence structures through an analysis of multivariate groundfish abundance data obtained from annual bottom trawl surveys in the northeast Pacific from 2014 to 2018. Supplementary materials accompanying this paper appear on-line.

Suggested Citation

  • Nurudeen A. Adegoke & Andrew Punnett & Marti J. Anderson, 2022. "Estimation of Multivariate Dependence Structures via Constrained Maximum Likelihood," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 240-260, June.
  • Handle: RePEc:spr:jagbes:v:27:y:2022:i:2:d:10.1007_s13253-021-00475-x
    DOI: 10.1007/s13253-021-00475-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-021-00475-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-021-00475-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Schmid, Friedrich & Schmidt, Rafael, 2007. "Multivariate conditional versions of Spearman's rho and related measures of tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1123-1140, July.
    3. Schoenberg, Ronald, 1997. "Constrained Maximum Likelihood," Computational Economics, Springer;Society for Computational Economics, vol. 10(3), pages 251-266, August.
    4. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    5. Gijbels, Irène & Veraverbeke, Noël & Omelka, Marel, 2011. "Conditional copulas, association measures and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1919-1932, May.
    6. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    7. Yunzhang Zhu & Xiaotong Shen & Wei Pan, 2020. "On High-Dimensional Constrained Maximum Likelihood Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 217-230, January.
    8. Jacob Bien & Robert J. Tibshirani, 2011. "Sparse estimation of a covariance matrix," Biometrika, Biometrika Trust, vol. 98(4), pages 807-820.
    9. Trede, Mark, 2020. "Maximum likelihood estimation of high-dimensional Student-t copulas," Statistics & Probability Letters, Elsevier, vol. 159(C).
    10. Popovic, Gordana C. & Hui, Francis K.C. & Warton, David I., 2018. "A general algorithm for covariance modeling of discrete data," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 86-100.
    11. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    12. Noël Veraverbeke & Marek Omelka & Irène Gijbels, 2011. "Estimation of a Conditional Copula and Association Measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(4), pages 766-780, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexis Derumigny & Jean-David Fermanian, 2018. "About Kendall's regression," Working Papers 2018-01, Center for Research in Economics and Statistics.
    2. Derumigny, Alexis & Fermanian, Jean-David, 2020. "On Kendall’s regression," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    3. Chen, Kun & Huang, Rui & Chan, Ngai Hang & Yau, Chun Yip, 2019. "Subgroup analysis of zero-inflated Poisson regression model with applications to insurance data," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 8-18.
    4. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    5. Z. John Daye & Jinbo Chen & Hongzhe Li, 2012. "High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis," Biometrics, The International Biometric Society, vol. 68(1), pages 316-326, March.
    6. Michael R. Wierzbicki & Li-Bing Guo & Qing-Tao Du & Wensheng Guo, 2014. "Sparse Semiparametric Nonlinear Model With Application to Chromatographic Fingerprints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1339-1349, December.
    7. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    8. Yanming Li & Bin Nan & Ji Zhu, 2015. "Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure," Biometrics, The International Biometric Society, vol. 71(2), pages 354-363, June.
    9. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    10. Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2021. "Estimation and optimal structure selection of high-dimensional Toeplitz covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    11. Xie, Jichun & Kang, Jian, 2017. "High-dimensional tests for functional networks of brain anatomic regions," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 70-88.
    12. Garcia-Magariños Manuel & Antoniadis Anestis & Cao Ricardo & González-Manteiga Wenceslao, 2010. "Lasso Logistic Regression, GSoft and the Cyclic Coordinate Descent Algorithm: Application to Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-30, August.
    13. Matthew Pietrosanu & Jueyu Gao & Linglong Kong & Bei Jiang & Di Niu, 2021. "Advanced algorithms for penalized quantile and composite quantile regression," Computational Statistics, Springer, vol. 36(1), pages 333-346, March.
    14. Benjamin G. Stokell & Rajen D. Shah & Ryan J. Tibshirani, 2021. "Modelling high‐dimensional categorical data using nonconvex fusion penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 579-611, July.
    15. Shaoxin Wang & Hu Yang & Chaoli Yao, 2019. "On the penalized maximum likelihood estimation of high-dimensional approximate factor model," Computational Statistics, Springer, vol. 34(2), pages 819-846, June.
    16. Bai, Jushan & Liao, Yuan, 2012. "Efficient Estimation of Approximate Factor Models," MPRA Paper 41558, University Library of Munich, Germany.
    17. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    18. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    19. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    20. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:27:y:2022:i:2:d:10.1007_s13253-021-00475-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.