IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v56y2025i1d10.1007_s13226-023-00489-w.html
   My bibliography  Save this article

Anticenter of Profiles in Products of Graphs

Author

Listed:
  • Manoj Changat

    (University of Kerala)

  • Prasanth G. Narasimha-Shenoi

    (Government College Chittur)

  • Mary Shalet Thottungal Joseph

    (Government College Chittur)

  • Archana Sivadas

    (Government College Chittur)

  • Prakash G. Narasimha-Shenoi

    (Maharaja’s College Ernakulam)

Abstract

A profile on a graph G is a sequence of vertices in which repetitions are allowed. The anticenter of a profile in G is the set of vertices in G that maximize the maximum distance to the profile. In this paper, the anticenter of profiles in various graph products, namely, Cartesian product, strong product, and lexicographic product is studied.

Suggested Citation

  • Manoj Changat & Prasanth G. Narasimha-Shenoi & Mary Shalet Thottungal Joseph & Archana Sivadas & Prakash G. Narasimha-Shenoi, 2025. "Anticenter of Profiles in Products of Graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 56(1), pages 404-413, March.
  • Handle: RePEc:spr:indpam:v:56:y:2025:i:1:d:10.1007_s13226-023-00489-w
    DOI: 10.1007/s13226-023-00489-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-023-00489-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-023-00489-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward Minieka, 1977. "The Centers and Medians of a Graph," Operations Research, INFORMS, vol. 25(4), pages 641-650, August.
    2. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Marianov & Daniel Serra, 2009. "Median problems in networks," Economics Working Papers 1151, Department of Economics and Business, Universitat Pompeu Fabra.
    2. James H. Lambert & Mark W. Farrington, 2006. "Risk‐Based Objectives for the Allocation of Chemical, Biological, and Radiological Air Emissions Sensors," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1659-1674, December.
    3. Alfandari, Laurent, 2004. "Choice Rules with Size Constraints for Multiple Criteria Decision Making," ESSEC Working Papers DR 04002, ESSEC Research Center, ESSEC Business School.
    4. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    5. M Horn, 1996. "Analysis and Computational Schemes for p-Median Heuristics," Environment and Planning A, , vol. 28(9), pages 1699-1708, September.
    6. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    7. Schnepper, Teresa & Klamroth, Kathrin & Stiglmayr, Michael & Puerto, Justo, 2019. "Exact algorithms for handling outliers in center location problems on networks using k-max functions," European Journal of Operational Research, Elsevier, vol. 273(2), pages 441-451.
    8. Davood Shishebori & Lawrence Snyder & Mohammad Jabalameli, 2014. "A Reliable Budget-Constrained FL/ND Problem with Unreliable Facilities," Networks and Spatial Economics, Springer, vol. 14(3), pages 549-580, December.
    9. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    10. Behrens, Kristian, 2007. "On the location and lock-in of cities: Geography vs transportation technology," Regional Science and Urban Economics, Elsevier, vol. 37(1), pages 22-45, January.
    11. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    12. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    13. Ashraf Abd El Karim & Mohsen M. Awawdeh, 2020. "Integrating GIS Accessibility and Location-Allocation Models with Multicriteria Decision Analysis for Evaluating Quality of Life in Buraidah City, KSA," Sustainability, MDPI, vol. 12(4), pages 1-28, February.
    14. Zvi Drezner & G. O. Wesolowsky, 1991. "Facility location when demand is time dependent," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 763-777, October.
    15. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    16. Stephanie A. Snyder & Robert G. Haight, 2016. "Application of the Maximal Covering Location Problem to Habitat Reserve Site Selection," International Regional Science Review, , vol. 39(1), pages 28-47, January.
    17. Robichet, Antoine & Nierat, Patrick, 2021. "Consequences of logistics sprawl: Order or chaos? - the case of a parcel service company in Paris metropolitan area," Journal of Transport Geography, Elsevier, vol. 90(C).
    18. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    19. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    20. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:56:y:2025:i:1:d:10.1007_s13226-023-00489-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.