IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i8d10.1007_s13198-024-02416-6.html
   My bibliography  Save this article

Probabilistic assessment of switchyard-centered LOOP event frequency and duration in an NPP

Author

Listed:
  • Rabah Benabid

    (Nuclear Research Centre of Birine)

  • Pierre Henneaux

    (Université libre de Bruxelles)

  • Pierre-Etienne Labeau

    (Université libre de Bruxelles)

Abstract

The occurrence of a Loss Of Offsite Power (LOOP) event can be a major threat to nuclear safety due to the dependence of auxiliary systems on electrical energy. Probabilistic safety assessments of nuclear power plants require, thus, estimates of the frequencies and durations of such LOOP events. These estimates are usually based on past statistical data, which is not always relevant. Model-based approaches are thus needed. This paper proposes an analytical method to estimate the frequency and duration of switchyard-centered LOOP events, which constitute one of the four main categories of LOOP events. The proposed method is mainly based on the identification of active minimal cut sets, considering the behavior of circuit breakers against faults according to their coordination and selectivity. Adapted versions of the Risk Reduction Worth and Fussel–Vesely importance factors are proposed to evaluate the impact of components on the switchyard-centered LOOP event frequency. Furthermore, uncertainty analysis is developed and performed. Various generic plant connection schemes are used for application. Results demonstrate the applicability of the methodology to estimate the frequency and duration of switchyard-centered LOOP events, and to identify optimal ways to reduce the risk by modifying the switchyard configuration.

Suggested Citation

  • Rabah Benabid & Pierre Henneaux & Pierre-Etienne Labeau, 2024. "Probabilistic assessment of switchyard-centered LOOP event frequency and duration in an NPP," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 4105-4123, August.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02416-6
    DOI: 10.1007/s13198-024-02416-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02416-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02416-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henneaux, Pierre & Labeau, Pierre-Etienne & Maun, Jean-Claude, 2012. "A level-1 probabilistic risk assessment to blackout hazard in transmission power systems," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 41-52.
    2. Å nipas, Mindaugas & Radziukynas, Virginijus & ValakeviÄ ius, Eimutis, 2017. "Modeling reliability of power systems substations by using stochastic automata networks," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 13-22.
    3. Ferrario, E. & Zio, E., 2014. "Assessing nuclear power plant safety and recovery from earthquakes using a system-of-systems approach," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 103-116.
    4. Jang, Seunghyun & Jae, Moosung, 2020. "A development of methodology for assessing the inter-unit common cause failure in multi-unit PSA model," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. Volkanovski, Andrija, 2017. "Wind generation impact on electricity generation adequacy and nuclear safety," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 85-92.
    6. Arigi, Awwal Mohammed & Park, Gayoung & Kim, Jonghyun, 2020. "Dependency analysis method for human failure events in multi-unit probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Kim, Yongjin & Jang, Seunghyun & Jae, Moosung, 2022. "Evaluation of inter-unit dependency effect on site core damage frequency: Internal and seismic event," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    3. Diao, Xiaoxu & Zhao, Yunfei & Smidts, Carol & Vaddi, Pavan Kumar & Li, Ruixuan & Lei, Hangtian & Chakhchoukh, Yacine & Johnson, Brian & Blanc, Katya Le, 2024. "Dynamic probabilistic risk assessment for electric grid cybersecurity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    5. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    6. Liang, Huangbin & Xie, Qiang, 2025. "Probabilistic seismic risk analysis of electrical substations considering equipment-to-equipment seismic failure correlations," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    7. Agnieszka Bieda & Agnieszka Cienciała, 2021. "Towards a Renewable Energy Source Cadastre—A Review of Examples from around the World," Energies, MDPI, vol. 14(23), pages 1-34, December.
    8. Shoki Kosai & Chia Kwang Tan & Eiji Yamasue, 2018. "Evaluating Power Reliability Dedicated for Sudden Disruptions: Its Application to Determine Capacity on the Basis of Energy Security," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    9. Rocchetta, R. & Li, Y.F. & Zio, E., 2015. "Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 47-61.
    10. Aien, Morteza & Hajebrahimi, Ali & Fotuhi-Firuzabad, Mahmud, 2016. "A comprehensive review on uncertainty modeling techniques in power system studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1077-1089.
    11. Zou, Yanhua & ÄŒepin, Marko, 2024. "Loss of load probability for power systems based on renewable sources," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    12. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2020. "Joint optimization of safety barriers for enhancing business continuity of nuclear power plants against steam generator tube ruptures accidents," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    13. Davis, Matthew T. & Proctor, Michael D. & Shageer, Buder, 2017. "Disaster factor screening using SoS conceptual modeling and an LVC simulation framework," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 368-375.
    14. Dar, Roouf Un Nabi & Alagappan, P., 2024. "A performance-based ballistic design framework for RC panels and a probabilistic model for crater quantification," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    15. Chen, Yahong & Deng, Changhong & Yao, Weiwei & Liang, Ning & Xia, Pei & Cao, Peng & Dong, Yiwang & Zhang, Yuan-ao & Liu, Zhichao & Li, Dinglin & Chen, Man & Peng, Peng, 2019. "Impacts of stochastic forecast errors of renewable energy generation and load demands on microgrid operation," Renewable Energy, Elsevier, vol. 133(C), pages 442-461.
    16. Muhammad Murtadha Othman & Nur Ashida Salim & Ismail Musirin, 2017. "Sustainability from the Occurrence of Critical Dynamic Power System Blackout Determined by Using the Stochastic Event Tree Technique," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    17. Eryilmaz, Serkan & Navarro, Jorge, 2022. "A decision theoretic framework for reliability-based optimal wind turbine selection," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    18. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Yoon, Jae Young & Kim, Dong-San, 2022. "Estimating the adverse effects of inter-unit radioactive release on operator actions at a multi-unit site," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    20. Garg, Vipul & Vinod, Gopika & Kant, Vivek, 2023. "Auto-CREAM: Software application for evaluation of HEP with basic and extended CREAM for PSA studies," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02416-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.