IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i1d10.1007_s13198-022-01786-z.html
   My bibliography  Save this article

Predicting human behavior from social media using mRMR with COA

Author

Listed:
  • Murari Devakannan Kamalesh

    (Sathyabama Institute of Science and Technology)

  • B. Bharathi

    (Sathyabama Institute of Science and Technology)

Abstract

Social media users can participate increasingly by sharing online information, and the work in this research content can be helpful to assess their personalities. Personality prediction is defined by extracting the digital features from the digital content and mapping those features into a personality prediction model. This human behaviour identification will be helpful to multiple job processes. The advancement of data-based approaches in social sciences will be helpful to model human behaviour based on unstructured text data. Due to the simple nature of the big five personality traits, it has been used in analyzing human behaviour. This paper focuses on predicting human behaviour based on personality prediction with unstructured textual data mining. So far, many researchers have proposed a personality prediction model based on deep learning approaches. However, the existing model slack processing time and the ability to capture the real meaning of the word. This paper proposes a deep learning-based prediction model from the data stored on Social media such as Facebook, Twitter, and Instagram to overcome these issues. Initially, the data are preprocessed to remove the irrelevant data such as URL, symbols and stop words. The features are extracted using the proposed mRMR based cat optimization algorithm from the preprocessed data. This approach identifies the relationship among feature sets and traits from datasets. The human behaviours are classified with an Improved LSTM classifier optimized with a forest optimization algorithm. The proposed mRMR-Cat optimization-based feature extraction and LSTM with forest optimization approaches outperform all feature extraction average baseline sets and Classify on multiple social datasets with improved accuracy of 86.5%, 88.4% and 90.16% for the datasets Facebook, Twitter and Instagram.

Suggested Citation

  • Murari Devakannan Kamalesh & B. Bharathi, 2024. "Predicting human behavior from social media using mRMR with COA," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(1), pages 475-488, January.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:1:d:10.1007_s13198-022-01786-z
    DOI: 10.1007/s13198-022-01786-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-022-01786-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-022-01786-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mike Thelwall & Kevan Buckley & Georgios Paltoglou & Di Cai & Arvid Kappas, 2010. "Sentiment strength detection in short informal text," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2544-2558, December.
    2. H Andrew Schwartz & Johannes C Eichstaedt & Margaret L Kern & Lukasz Dziurzynski & Stephanie M Ramones & Megha Agrawal & Achal Shah & Michal Kosinski & David Stillwell & Martin E P Seligman & Lyle H U, 2013. "Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    2. Kübler, Raoul V. & Manke, Kai & Pauwels, Koen, 2025. "I like, I share, I vote: Mapping the dynamic system of political marketing," Journal of Business Research, Elsevier, vol. 186(C).
    3. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    4. Daesik Kim & Chung Joo Chung & Kihong Eom, 2022. "Measuring Online Public Opinion for Decision Making: Application of Deep Learning on Political Context," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    5. Jörn H. Block & Walter Diegel & Christian Fisch, 2024. "How venture capital funding changes an entrepreneur’s digital identity: more self-confidence and professionalism but less authenticity!," Review of Managerial Science, Springer, vol. 18(8), pages 2287-2319, August.
    6. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
    7. Tadić, Bosiljka & Mitrović Dankulov, Marija & Melnik, Roderick, 2023. "Evolving cycles and self-organised criticality in social dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    8. Ray, Rajeev Kumar & Singh, Amit, 2025. "From online reviews to smartwatch recommendation: An integrated aspect-based sentiment analysis framework," Journal of Retailing and Consumer Services, Elsevier, vol. 82(C).
    9. Schmidt, Corinna Vera Hedwig & Gaßmann, Patrick Sven & McElvany, Nele & Flatten, Tessa Christina, 2025. "Angel funding and entrepreneurs' well-being: The mediating role of autonomy, competence, and relatedness," Journal of Business Venturing, Elsevier, vol. 40(2).
    10. Ping-Yu Hsu & Hong-Tsuen Lei & Shih-Hsiang Huang & Teng Hao Liao & Yao-Chung Lo & Chin-Chun Lo, 2019. "Effects of sentiment on recommendations in social network," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(2), pages 253-262, June.
    11. Cohen, Scott & Stienmetz, Jason & Hanna, Paul & Humbracht, Michael & Hopkins, Debbie, 2020. "Shadowcasting tourism knowledge through media: Self-driving sex cars?," Annals of Tourism Research, Elsevier, vol. 85(C).
    12. Zhang, Xuetong & Zhang, Weiguo, 2023. "Information asymmetry, sentiment interactions, and asset price," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    13. Karel Hrazdil & Jiri Novak & Rafael Rogo & Christine Wiedman & Ray Zhang, 2020. "Measuring executive personality using machine‐learning algorithms: A new approach and audit fee‐based validation tests," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 47(3-4), pages 519-544, March.
    14. Luo, Shuli & He, Sylvia Y., 2021. "Understanding gender difference in perceptions toward transit services across space and time: A social media mining approach," Transport Policy, Elsevier, vol. 111(C), pages 63-73.
    15. Gow, Ian D. & Kaplan, Steven N. & Larcker, David F. & Zakolyukina, Anastasia A., 2016. "CEO Personality and Firm Policies," Research Papers 3444, Stanford University, Graduate School of Business.
    16. Indy Wijngaards & Martijn Burger & Job van Exel, 2019. "The promise of open survey questions—The validation of text-based job satisfaction measures," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-22, December.
    17. Junegak Joung & Ki-Hun Kim & Kwangsoo Kim, 2021. "Data-Driven Approach to Dual Service Failure Monitoring From Negative Online Reviews: Managerial Perspective," SAGE Open, , vol. 11(1), pages 21582440209, January.
    18. Mikkel Wallentin, 2018. "Sex differences in post-stroke aphasia rates are caused by age. A meta-analysis and database query," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-18, December.
    19. Hannes Rosenbusch & Maya Aghaei & Anthony M. Evans & Marcel Zeelenberg, 2021. "Psychological trait inferences from women’s clothing: human and machine prediction," Journal of Computational Social Science, Springer, vol. 4(2), pages 479-501, November.
    20. Ema Kušen & Mark Strembeck, 2021. "“Evacuate everyone south of that line” Analyzing structural communication patterns during natural disasters," Journal of Computational Social Science, Springer, vol. 4(2), pages 531-565, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:1:d:10.1007_s13198-022-01786-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.