IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0073791.html
   My bibliography  Save this article

Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach

Author

Listed:
  • H Andrew Schwartz
  • Johannes C Eichstaedt
  • Margaret L Kern
  • Lukasz Dziurzynski
  • Stephanie M Ramones
  • Megha Agrawal
  • Achal Shah
  • Michal Kosinski
  • David Stillwell
  • Martin E P Seligman
  • Lyle H Ungar

Abstract

We analyzed 700 million words, phrases, and topic instances collected from the Facebook messages of 75,000 volunteers, who also took standard personality tests, and found striking variations in language with personality, gender, and age. In our open-vocabulary technique, the data itself drives a comprehensive exploration of language that distinguishes people, finding connections that are not captured with traditional closed-vocabulary word-category analyses. Our analyses shed new light on psychosocial processes yielding results that are face valid (e.g., subjects living in high elevations talk about the mountains), tie in with other research (e.g., neurotic people disproportionately use the phrase ‘sick of’ and the word ‘depressed’), suggest new hypotheses (e.g., an active life implies emotional stability), and give detailed insights (males use the possessive ‘my’ when mentioning their ‘wife’ or ‘girlfriend’ more often than females use ‘my’ with ‘husband’ or 'boyfriend’). To date, this represents the largest study, by an order of magnitude, of language and personality.

Suggested Citation

  • H Andrew Schwartz & Johannes C Eichstaedt & Margaret L Kern & Lukasz Dziurzynski & Stephanie M Ramones & Megha Agrawal & Achal Shah & Michal Kosinski & David Stillwell & Martin E P Seligman & Lyle H U, 2013. "Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0073791
    DOI: 10.1371/journal.pone.0073791
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073791
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0073791&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0073791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sharon Weinberger, 2011. "Social science: Web of war," Nature, Nature, vol. 471(7340), pages 566-568, March.
    2. Grimmer, Justin & Stewart, Brandon M., 2013. "Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts," Political Analysis, Cambridge University Press, vol. 21(3), pages 267-297, July.
    3. Monroe, Burt L. & Colaresi, Michael P. & Quinn, Kevin M., 2008. "Fightin' Words: Lexical Feature Selection and Evaluation for Identifying the Content of Political Conflict," Political Analysis, Cambridge University Press, vol. 16(4), pages 372-403.
    4. Jonathan B. Slapin & Sven‐Oliver Proksch, 2008. "A Scaling Model for Estimating Time‐Series Party Positions from Texts," American Journal of Political Science, John Wiley & Sons, vol. 52(3), pages 705-722, July.
    5. Laver, Michael & Benoit, Kenneth & Garry, John, 2003. "Extracting Policy Positions from Political Texts Using Words as Data," American Political Science Review, Cambridge University Press, vol. 97(2), pages 311-331, May.
    6. Efstathios Stamatatos, 2009. "A survey of modern authorship attribution methods," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 538-556, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Haselmayer & Marcelo Jenny, 2017. "Sentiment analysis of political communication: combining a dictionary approach with crowdcoding," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2623-2646, November.
    2. Greene, Zac & Ceron, Andrea & Schumacher, Gijs & Fazekas, Zoltan, 2016. "The Nuts and Bolts of Automated Text Analysis. Comparing Different Document Pre-Processing Techniques in Four Countries," OSF Preprints ghxj8, Center for Open Science.
    3. Weiss, Max & Zoorob, Michael, 2021. "Political frames of public health crises: Discussing the opioid epidemic in the US Congress," Social Science & Medicine, Elsevier, vol. 281(C).
    4. Pierre-Marc Daigneault & Dominic Duval & Louis M. Imbeau, 2018. "Supervised scaling of semi-structured interview transcripts to characterize the ideology of a social policy reform," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2151-2162, September.
    5. Diaf, Sami & Döpke, Jörg & Fritsche, Ulrich & Rockenbach, Ida, 2022. "Sharks and minnows in a shoal of words: Measuring latent ideological positions based on text mining techniques," European Journal of Political Economy, Elsevier, vol. 75(C).
    6. Rebecca Cordell & Kristian Skrede Gleditsch & Florian G Kern & Laura Saavedra-Lux, 2020. "Measuring institutional variation across American Indian constitutions using automated content analysis," Journal of Peace Research, Peace Research Institute Oslo, vol. 57(6), pages 777-788, November.
    7. Born, Andreas & Janssen, Aljoscha, 2020. "Does a District-Vote Matter for the Behavior of Politicians? A Textual Analysis of Parliamentary Speeches," Working Paper Series 1320, Research Institute of Industrial Economics.
    8. H. Andrew Schwartz & Lyle H. Ungar, 2015. "Data-Driven Content Analysis of Social Media," The ANNALS of the American Academy of Political and Social Science, , vol. 659(1), pages 78-94, May.
    9. Merz, Nicolas & Regel, Sven & Lewandowski, Jirka, 2016. "The Manifesto Corpus: A new resource for research on political parties and quantitative text analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 3(2 (April-), pages 1-8.
    10. Alexander Herzog & Slava Mikhaylov, 2010. "A new Database of Parliamentary Debates in Ireland, 1922--2008," The Institute for International Integration Studies Discussion Paper Series iiisdp338, IIIS, revised Jul 2010.
    11. Born, Andreas & Janssen, Aljoscha, 2022. "Does a district mandate matter for the behavior of politicians? An analysis of roll-call votes and parliamentary speeches," European Journal of Political Economy, Elsevier, vol. 71(C).
    12. Gavin Abercrombie & Riza Batista-Navarro, 2020. "Sentiment and position-taking analysis of parliamentary debates: a systematic literature review," Journal of Computational Social Science, Springer, vol. 3(1), pages 245-270, April.
    13. Anna Calissano & Simone Vantini & Marika Arena, 2020. "Monitoring rare categories in sentiment and opinion analysis: a Milan mega event on Twitter platform," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 787-812, December.
    14. Pongsak Luangaram & Yuthana Sethapramote, 2016. "Central Bank Communication and Monetary Policy Effectiveness: Evidence from Thailand," PIER Discussion Papers 20, Puey Ungphakorn Institute for Economic Research.
    15. Rybinski, Krzysztof, 2020. "The forecasting power of the multi-language narrative of sell-side research: A machine learning evaluation," Finance Research Letters, Elsevier, vol. 34(C).
    16. Sami Diaf & Jörg Döpke & Ulrich Fritsche & Ida Rockenbach, 2020. "Sharks and minnows in a shoal of words: Measuring latent ideological positions of German economic research institutes based on text mining techniques," Macroeconomics and Finance Series 202001, University of Hamburg, Department of Socioeconomics.
    17. Hanna Bäck & Marc Debus & Wolfgang C. Müller, 2016. "Intra-party diversity and ministerial selection in coalition governments," Public Choice, Springer, vol. 166(3), pages 355-378, March.
    18. Anselm Hager & Hanno Hilbig, 2020. "Does Public Opinion Affect Political Speech?," American Journal of Political Science, John Wiley & Sons, vol. 64(4), pages 921-937, October.
    19. Osterloh, Steffen, 2012. "Words speak louder than actions: The impact of politics on economic performance," Journal of Comparative Economics, Elsevier, vol. 40(3), pages 318-336.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0073791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.