IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i3d10.1007_s13198-021-01477-1.html
   My bibliography  Save this article

PSIR: a novel phase-wise diffusion model for lockdown analysis of COVID-19 pandemic in India

Author

Listed:
  • Adwitiya Sinha

    (Jaypee Institute of Information Technology)

Abstract

The coronavirus pandemic has damaged economies and hampered human lives with fatalities and socio-economic losses. The emergency intervention measures imposed in several nations during the primary stage of the contagion had stalled the deadly virus from spreading explosively. One such preventive measures include the nation-wide lockdown process that became a significant step towards mitigation of COVID-19. In the proposed work, a diffusion-based system is proposed to analyze the impact of lockdown in India. The COVID spread data was obtained from the aggregated situation reports made available by the World Health Organization. The infection and recovery rate, being phase-dependent parameters, are computed from lockdown analysis. The reproduction number of coronavirus is also estimated for each phase, which was found to decrease consistently from initial to final phase during the lockdown. Further, the Phase-wise Susceptible-Infected-Recovered network diffusion system is proposed to model the phase-wise evolution of coronavirus spread in India is assessed. The proposed system simulated the lockdown that was imposed in India into five phases for an initial duration of 98 days. The infection and recovery rate during lockdown were used to be an important parameter in diffusion to measure the spreading potential of the deadly virus. Finally, the research highlights the benefits of re-imposing lockdown in India for controlling the devastating COVID-19 situations, based on pre and post lockdown situation.

Suggested Citation

  • Adwitiya Sinha, 2022. "PSIR: a novel phase-wise diffusion model for lockdown analysis of COVID-19 pandemic in India," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1356-1369, June.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-021-01477-1
    DOI: 10.1007/s13198-021-01477-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01477-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01477-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ndaïrou, Faïçal & Area, Iván & Nieto, Juan J. & Torres, Delfim F.M., 2020. "Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. S. P. Zemtsov & V. L. Baburin, 2020. "COVID-19: Spatial Dynamics and Diffusion Factors across Russian Regions," Regional Research of Russia, Springer, vol. 10(3), pages 273-290, July.
    3. Jain, Somya & Sinha, Adwitiya, 2020. "Identification of influential users on Twitter: A novel weighted correlated influence measure for Covid-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vahideh Vakil & Wade Trappe, 2022. "Projecting the Pandemic Trajectory through Modeling the Transmission Dynamics of COVID-19," IJERPH, MDPI, vol. 19(8), pages 1-28, April.
    2. Pavlov, Konstantin & Timiryanova, Venera & Yusupov, Kasim & Krasnoselskaya, Dina, 2022. "Анализ волн распространения Covid-19 в России [Analysis of Covid-19 wave distribution in Russia]," MPRA Paper 114637, University Library of Munich, Germany.
    3. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    4. M. A. Kaneva, 2023. "Determinants of Economic Growth in Regions with Different COVID-19 Incidence Rates," Regional Research of Russia, Springer, vol. 13(2), pages 296-304, June.
    5. Shah, Kamal & Arfan, Muhammad & Ullah, Aman & Al-Mdallal, Qasem & Ansari, Khursheed J. & Abdeljawad, Thabet, 2022. "Computational study on the dynamics of fractional order differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Basnarkov, Lasko, 2021. "SEAIR Epidemic spreading model of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Đorđević, J. & Papić, I. & Šuvak, N., 2021. "A two diffusion stochastic model for the spread of the new corona virus SARS-CoV-2," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    8. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Carballosa, Alejandro & Balsa-Barreiro, José & Boullosa, Pablo & Garea, Adrián & Mira, Jorge & Miramontes, Ángel & Muñuzuri, Alberto P., 2022. "Assessing the risk of pandemic outbreaks across municipalities with mathematical descriptors based on age and mobility restrictions," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    11. Ojo, Mayowa M. & Benson, Temitope O. & Peter, Olumuyiwa James & Goufo, Emile Franc Doungmo, 2022. "Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    12. Mishra, A.M. & Purohit, S.D. & Owolabi, K.M. & Sharma, Y.D., 2020. "A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Olivares, Alberto & Staffetti, Ernesto, 2021. "Uncertainty quantification of a mathematical model of COVID-19 transmission dynamics with mass vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Păcurar, Cristina-Maria & Necula, Bogdan-Radu, 2020. "An analysis of COVID-19 spread based on fractal interpolation and fractal dimension," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    15. Kumar Das, Dhiraj & Khatua, Anupam & Kar, T.K. & Jana, Soovoojeet, 2021. "The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    16. Barbosa, Charles H.X.B. & Dias, Claudia M. & Pastore, Dayse H. & Silva, José C.R. & Costa, Anna R.C. & Santos, Isaac P. & Azevedo, Ramoni Z.S. & Figueira, Raquel M.A. & Fortunato, Humberto F.M., 2023. "Analysis of a mathematical model for golden mussels infestation," Ecological Modelling, Elsevier, vol. 486(C).
    17. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    18. Amaral, Marco A. & Oliveira, Marcelo M. de & Javarone, Marco A., 2021. "An epidemiological model with voluntary quarantine strategies governed by evolutionary game dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    19. Kassa, Semu M. & Njagarah, John B.H. & Terefe, Yibeltal A., 2020. "Analysis of the mitigation strategies for COVID-19: From mathematical modelling perspective," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    20. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:3:d:10.1007_s13198-021-01477-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.