An Integer Programming Approach to Solving the Inverse Graph Model for Conflict Resolution with Two Decision Makers
Author
Abstract
Suggested Citation
DOI: 10.1007/s10726-021-09755-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Garcia, A. & Hipel, K.W., 2017. "Inverse engineering preferences in simple games," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 184-194.
- Fang, Liping & Hipel, Keith W. & Kilgour, D. Marc, 1989. "Conflict models in graph form: Solution concepts and their interrelationships," European Journal of Operational Research, Elsevier, vol. 41(1), pages 86-100, July.
- Rêgo, Leandro Chaves & Silva, Hugo Victor & Rodrigues, Carlos Diego, 2021. "Optimizing the cost of preference manipulation in the graph model for conflict resolution," Applied Mathematics and Computation, Elsevier, vol. 392(C).
- Keith W. Hipel & Liping Fang & D. Marc Kilgour, 2020. "The Graph Model for Conflict Resolution: Reflections on Three Decades of Development," Group Decision and Negotiation, Springer, vol. 29(1), pages 11-60, February.
- Wang, Junjie & Hipel, Keith W. & Fang, Liping & Dang, Yaoguo, 2018. "Matrix representations of the inverse problem in the graph model for conflict resolution," European Journal of Operational Research, Elsevier, vol. 270(1), pages 282-293.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiufen Gu & Lailei Gu & Dayong Wang & Sajad Jamshidi, 2023. "Resolving Trans-Boundary Water Conflicts: Third-Party Mediation Using an Inverse Approach of GMCR Under Incomplete Preference Environments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(15), pages 6071-6088, December.
- Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
- Zhu, Ziming & Kilgour, D. Marc & Hipel, Keith W. & Yu, Jing, 2025. "Interrelationships of Non-cooperative, Classical and Pareto coalitional stability definitions," European Journal of Operational Research, Elsevier, vol. 321(3), pages 884-894.
- Zhu, Yan & Dong, Yucheng & Zhang, Hengjie & Fang, Liping, 2025. "Exploring the minimum cost conflict mediation path to a desired resolution within the inverse graph model framework," European Journal of Operational Research, Elsevier, vol. 321(2), pages 543-564.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liangyan Tao & Xuebi Su & Saad Ahmed Javed, 2021. "Inverse Preference Optimization in the Graph Model for Conflict Resolution based on the Genetic Algorithm," Group Decision and Negotiation, Springer, vol. 30(5), pages 1085-1112, October.
- Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.
- Zhu, Yan & Dong, Yucheng & Zhang, Hengjie & Fang, Liping, 2025. "Exploring the minimum cost conflict mediation path to a desired resolution within the inverse graph model framework," European Journal of Operational Research, Elsevier, vol. 321(2), pages 543-564.
- Emerson Rodrigues Sabino & Leandro Chaves Rêgo, 2025. "Introducing Credible Movements in the Optimism Pessimism Stability in the Graph Model," Group Decision and Negotiation, Springer, vol. 34(1), pages 177-207, February.
- Xiufen Gu & Lailei Gu & Dayong Wang & Sajad Jamshidi, 2023. "Resolving Trans-Boundary Water Conflicts: Third-Party Mediation Using an Inverse Approach of GMCR Under Incomplete Preference Environments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(15), pages 6071-6088, December.
- Keith W. Hipel & Liping Fang & D. Marc Kilgour, 2020. "The Graph Model for Conflict Resolution: Reflections on Three Decades of Development," Group Decision and Negotiation, Springer, vol. 29(1), pages 11-60, February.
- Leandro Chaves Rêgo & France E. G. Oliveira, 2020. "Higher-order Sequential Stabilities in the Graph Model for Conflict Resolution for Bilateral Conflicts," Group Decision and Negotiation, Springer, vol. 29(4), pages 601-626, August.
- He, Shawei, 2022. "A time sensitive graph model for conflict resolution with application to international air carbon negotiation," European Journal of Operational Research, Elsevier, vol. 302(2), pages 652-670.
- Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2023. "Can third-party market cooperation solve the dilemma of emissions reduction? A case study of energy investment project conflict analysis in the context of carbon neutrality," Energy, Elsevier, vol. 264(C).
- Fritz W. Scharpf, 1991. "Games Real Actors Could Play: The Challenge of Complexity," Journal of Theoretical Politics, , vol. 3(3), pages 277-304, July.
- Shafi, Ahsan & Wang, Zhanqi & Ehsan, Muhsan & Riaz, Faizan Ahmed & Ali, Muhammad Rashid & Xu, Feng, 2023. "A game theory approach to land acquisition conflicts in Pakistan," Land Use Policy, Elsevier, vol. 132(C).
- Shawei He & Xiaohui Liu & Xianmei Li, 2023. "A Graph Model for Conflict Resolution with Time-varying Attitudes and Its Application to China-US Trade Disputes," Group Decision and Negotiation, Springer, vol. 32(3), pages 603-631, June.
- M. Nassereddine & M. A. Ellakkis & A. Azar & M. D. Nayeri, 2021. "Developing a Multi-methodology for Conflict Resolution: Case of Yemen’s Humanitarian Crisis," Group Decision and Negotiation, Springer, vol. 30(2), pages 301-320, April.
- Inohara, Takehiro, 2016. "State transition time analysis in the Graph Model for Conflict Resolution," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 372-382.
- Kaveh Madani & Keith Hipel, 2011. "Non-Cooperative Stability Definitions for Strategic Analysis of Generic Water Resources Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1949-1977, June.
- Wu, Nannan & Xu, Yejun & Kilgour, D. Marc & Fang, Liping, 2023. "The graph model for composite decision makers and its application to a water resource conflict," European Journal of Operational Research, Elsevier, vol. 306(1), pages 308-321.
- Inohara, Takehiro, 2023. "Similarities, differences, and preservation of efficiencies, with application to attitude analysis, within the Graph Model for Conflict Resolution," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1330-1348.
- Fritz W. Scharpf, 1991. "Response to Steven J. Brams and Bruno S. Frey," Rationality and Society, , vol. 3(2), pages 261-265, April.
- Zhu, Ziming & Kilgour, D. Marc & Hipel, Keith W. & Yu, Jing, 2025. "Interrelationships of Non-cooperative, Classical and Pareto coalitional stability definitions," European Journal of Operational Research, Elsevier, vol. 321(3), pages 884-894.
- Yasuhiro Asa & Takeshi Kato & Ryuji Mine, 2022. "Composite Consensus-Building Process: Permissible Meeting Analysis and Compromise Choice Exploration," Papers 2211.08593, arXiv.org.
More about this item
Keywords
Graph model for conflict resolution; Integer programming; Inverse analysis; Matrix representation; Stability definitions; Unknown preference;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:31:y:2022:i:1:d:10.1007_s10726-021-09755-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.