IDEAS home Printed from https://ideas.repec.org/a/spr/fobric/v14y2020i1d10.1186_s11782-020-00082-6.html
   My bibliography  Save this article

Deep learning in finance and banking: A literature review and classification

Author

Listed:
  • Jian Huang

    (The Hong Kong University of Science and Technology)

  • Junyi Chai

    (BNU-HKBU United International College)

  • Stella Cho

    (BNU-HKBU United International College)

Abstract

Deep learning has been widely applied in computer vision, natural language processing, and audio-visual recognition. The overwhelming success of deep learning as a data processing technique has sparked the interest of the research community. Given the proliferation of Fintech in recent years, the use of deep learning in finance and banking services has become prevalent. However, a detailed survey of the applications of deep learning in finance and banking is lacking in the existing literature. This study surveys and analyzes the literature on the application of deep learning models in the key finance and banking domains to provide a systematic evaluation of the model preprocessing, input data, and model evaluation. Finally, we discuss three aspects that could affect the outcomes of financial deep learning models. This study provides academics and practitioners with insight and direction on the state-of-the-art of the application of deep learning models in finance and banking.

Suggested Citation

  • Jian Huang & Junyi Chai & Stella Cho, 2020. "Deep learning in finance and banking: A literature review and classification," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-24, December.
  • Handle: RePEc:spr:fobric:v:14:y:2020:i:1:d:10.1186_s11782-020-00082-6
    DOI: 10.1186/s11782-020-00082-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s11782-020-00082-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s11782-020-00082-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Butaru, Florentin & Chen, Qingqing & Clark, Brian & Das, Sanmay & Lo, Andrew W. & Siddique, Akhtar, 2016. "Risk and risk management in the credit card industry," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 218-239.
    3. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    4. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    5. Yang, Pengbo & Shang, Pengjian & Lin, Aijing, 2017. "Financial time series analysis based on effective phase transfer entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 398-408.
    6. Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    7. Sevim, Cuneyt & Oztekin, Asil & Bali, Ozkan & Gumus, Serkan & Guresen, Erkam, 2014. "Developing an early warning system to predict currency crises," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1095-1104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kouladoum, Jean-Claude & Wirajing, Muhamadu Awal Kindzeka & Nchofoung, Tii N., 2022. "Digital technologies and financial inclusion in Sub-Saharan Africa," Telecommunications Policy, Elsevier, vol. 46(9).
    2. Soren Bettels & Stefan Weber, 2024. "An Integrated Approach to Importance Sampling and Machine Learning for Efficient Monte Carlo Estimation of Distortion Risk Measures in Black Box Models," Papers 2408.02401, arXiv.org, revised Jan 2025.
    3. Ivan Jajić & Tomislav Herceg & Mirjana Pejić Bach, 2022. "Deployment of the Microeconomic Consumer Theory in the Artificial Neural Networks Modelling: Case of Organic Food Consumption," Mathematics, MDPI, vol. 10(17), pages 1-21, September.
    4. Anishka Chauhan & Pratham Mayur & Yeshwanth Sai Gokarakonda & Pooriya Jamie & Naman Mehrotra, 2024. "Indian Stock Market Prediction using Augmented Financial Intelligence ML," Papers 2407.02236, arXiv.org.
    5. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
    6. Heyam H. Al-Baity, 2023. "The Artificial Intelligence Revolution in Digital Finance in Saudi Arabia: A Comprehensive Review and Proposed Framework," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    7. Kanzari, Dalel & Nakhli, Mohamed Sahbi & Gaies, Brahim & Sahut, Jean-Michel, 2023. "Predicting macro-financial instability – How relevant is sentiment? Evidence from long short-term memory networks," Research in International Business and Finance, Elsevier, vol. 65(C).
    8. Valentina ZOZULYA & Evgeny SOKOLOV & Evgeny KOSTYRIN & Sergey KOROLEV, 2021. "The effectiveness of applying beta-coefficient modifications when calculating returns on shares in Russian companies," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 12, pages 31-52, June.
    9. Ni Zhan, 2021. "Where does the Stimulus go? Deep Generative Model for Commercial Banking Deposits," Papers 2101.09230, arXiv.org.
    10. Ricardo Cuervo, 2023. "Predictive AI for SME and Large Enterprise Financial Performance Management," Papers 2311.05840, arXiv.org.
    11. Yanfeng Zhang & Lichun Wang, 2023. "An AdaBoost Method with K′K-Means Bayes Classifier for Imbalanced Data," Mathematics, MDPI, vol. 11(8), pages 1-11, April.
    12. Thierry Warin & Aleksandar Stojkov, 2021. "Machine Learning in Finance: A Metadata-Based Systematic Review of the Literature," JRFM, MDPI, vol. 14(7), pages 1-31, July.
    13. Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
    14. Weidong Chen & Xiaohui Yuan, 2021. "Financial inclusion in China: an overview," Frontiers of Business Research in China, Springer, vol. 15(1), pages 1-21, December.
    15. Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
    16. Aldasoro, Inaki & Gambacorta, Leonardo & Korinek, Anton & Shreeti, Vatsala & Stein, Merlin, 2024. "Intelligent financial system: how AI is transforming finance," CEPR Discussion Papers 19181, C.E.P.R. Discussion Papers.
    17. Jaydip Sen & Rajdeep Sen & Abhishek Dutta, 2021. "Machine Learning in Finance-Emerging Trends and Challenges," Papers 2110.11999, arXiv.org.
    18. Ajitha Kumari Vijayappan Nair Biju & Ann Susan Thomas & J Thasneem, 2024. "Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 849-878, February.
    19. Brahmana, Rayenda Khresna, 2022. "Do Machine Learning Approaches Have the Same Accuracy in Forecasting Cryptocurrencies Volatilities?," MPRA Paper 119598, University Library of Munich, Germany.
    20. Mahsa Tavakoli & Rohitash Chandra & Fengrui Tian & Cristi'an Bravo, 2023. "Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams," Papers 2304.10740, arXiv.org, revised Nov 2024.
    21. Raz Lapid & Almog Dubin & Moshe Sipper, 2024. "Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors," Mathematics, MDPI, vol. 12(22), pages 1-21, November.
    22. Jianian Wang & Sheng Zhang & Yanghua Xiao & Rui Song, 2021. "A Review on Graph Neural Network Methods in Financial Applications," Papers 2111.15367, arXiv.org, revised Apr 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    2. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    3. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    4. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    5. Sang Il Lee & Seong Joon Yoo, 2017. "Threshold-Based Portfolio: The Role of the Threshold and Its Applications," Papers 1709.09822, arXiv.org, revised Aug 2018.
    6. Van Nguyen, Truong & Zhou, Li & Chong, Alain Yee Loong & Li, Boying & Pu, Xiaodie, 2020. "Predicting customer demand for remanufactured products: A data-mining approach," European Journal of Operational Research, Elsevier, vol. 281(3), pages 543-558.
    7. Wang, Peiwan & Zong, Lu, 2023. "Does machine learning help private sectors to alarm crises? Evidence from China’s currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    8. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Kiyoshi Izumi & Hiroki Sakaji & Atsuo Kato, 2020. "Latent Segmentation of Stock Trading Strategies Using Multi-Modal Imitation Learning," JRFM, MDPI, vol. 13(11), pages 1-12, October.
    9. Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    10. Ajitha Kumari Vijayappan Nair Biju & Ann Susan Thomas & J Thasneem, 2024. "Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 849-878, February.
    11. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    12. Ma, Chenyao & Yan, Sheng, 2022. "Deep learning in the Chinese stock market: The role of technical indicators," Finance Research Letters, Elsevier, vol. 49(C).
    13. Carmina Fjellstrom, 2022. "Long Short-Term Memory Neural Network for Financial Time Series," Papers 2201.08218, arXiv.org.
    14. Elizabeth Fons & Paula Dawson & Xiao-jun Zeng & John Keane & Alexandros Iosifidis, 2020. "Augmenting transferred representations for stock classification," Papers 2011.04545, arXiv.org.
    15. Chariton Chalvatzis & Dimitrios Hristu-Varsakelis, 2019. "High-performance stock index trading: making effective use of a deep LSTM neural network," Papers 1902.03125, arXiv.org, revised May 2019.
    16. Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
    17. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
    18. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    19. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    20. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fobric:v:14:y:2020:i:1:d:10.1186_s11782-020-00082-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.