IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v28y2016i3d10.1007_s10696-015-9227-1.html
   My bibliography  Save this article

Daily scheduling of home health care services using time-dependent public transport

Author

Listed:
  • Klaus-Dieter Rest

    (University of Natural Resources and Life Sciences, Vienna)

  • Patrick Hirsch

    (University of Natural Resources and Life Sciences, Vienna)

Abstract

This paper presents a real-world optimization problem in home health care that is solved on a daily basis. It can be described as follows: care staff members with different qualification levels have to visit certain clients at least once per day. Assignment constraints and hard time windows at the clients have to be observed. The staff members have a maximum working time and their workday can be separated into two shifts. A mandatory break that can also be partitioned needs to be scheduled if the consecutive working time exceeds a certain threshold. The objective is to minimize the total travel- and waiting times of the care staff. Additionally, factors influencing the satisfaction of the clients or the care staff are considered. Most of the care staff members from the Austrian Red Cross (ARC) in Vienna use a combination of public transport modes (bus, tram, train, and metro) and walking. We present a novel model formulation for this problem, followed by an efficient exact solution approach to compute the time-dependent travel times out of the timetables from public transport service providers on a minute-basis. These travel time matrices are then used as input for three Tabu Search based solution methods for the scheduling problem. Extensive numerical studies with real-world data from the ARC show that the current planning can be improved significantly when these methods are applied.

Suggested Citation

  • Klaus-Dieter Rest & Patrick Hirsch, 2016. "Daily scheduling of home health care services using time-dependent public transport," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 495-525, September.
  • Handle: RePEc:spr:flsman:v:28:y:2016:i:3:d:10.1007_s10696-015-9227-1
    DOI: 10.1007/s10696-015-9227-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-015-9227-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-015-9227-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    2. Bräysy, Olli & Dullaert, Wout & Nakari, Pentti, 2009. "The potential of optimization in communal routing problems: case studies from Finland," Journal of Transport Geography, Elsevier, vol. 17(6), pages 484-490.
    3. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    4. Rasmussen, Matias Sevel & Justesen, Tor & Dohn, Anders & Larsen, Jesper, 2012. "The Home Care Crew Scheduling Problem: Preference-based visit clustering and temporal dependencies," European Journal of Operational Research, Elsevier, vol. 219(3), pages 598-610.
    5. Said Dabia & Stefan Ropke & Tom van Woensel & Ton De Kok, 2013. "Branch and Price for the Time-Dependent Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 47(3), pages 380-396, August.
    6. Bernhard Fleischmann & Martin Gietz & Stefan Gnutzmann, 2004. "Time-Varying Travel Times in Vehicle Routing," Transportation Science, INFORMS, vol. 38(2), pages 160-173, May.
    7. Chryssi Malandraki & Mark S. Daskin, 1992. "Time Dependent Vehicle Routing Problems: Formulations, Properties and Heuristic Algorithms," Transportation Science, INFORMS, vol. 26(3), pages 185-200, August.
    8. Patrik Eveborn & Mikael Rönnqvist & Helga Einarsdóttir & Mats Eklund & Karin Lidén & Marie Almroth, 2009. "Operations Research Improves Quality and Efficiency in Home Care," Interfaces, INFORMS, vol. 39(1), pages 18-34, February.
    9. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    10. Sachidanand V. Begur & David M. Miller & Jerry R. Weaver, 1997. "An Integrated Spatial DSS for Scheduling and Routing Home-Health-Care Nurses," Interfaces, INFORMS, vol. 27(4), pages 35-48, August.
    11. Andrea Matta & Salma Chahed - Jebalia & Evren Sahin, 2014. "Modelling home care organisations from an operations management perspective," Post-Print hal-01737963, HAL.
    12. Eveborn, Patrik & Flisberg, Patrik & Ronnqvist, Mikael, 2006. "Laps Care--an operational system for staff planning of home care," European Journal of Operational Research, Elsevier, vol. 171(3), pages 962-976, June.
    13. Patrick Hirsch, 2011. "Minimizing Empty Truck Loads in Round Timber Transport with Tabu Search Strategies," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global, vol. 4(2), pages 15-41, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aliza Heching & J. N. Hooker & Ryo Kimura, 2019. "A Logic-Based Benders Approach to Home Healthcare Delivery," Transportation Science, INFORMS, vol. 53(2), pages 510-522, March.
    2. Christian Fikar & Patrick Hirsch, 2018. "Evaluation of trip and car sharing concepts for home health care services," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 78-97, June.
    3. Marouene Chaieb & Jaber Jemai & Khaled Mellouli, 2020. "A decomposition - construction approach for solving the home health care scheduling problem," Health Care Management Science, Springer, vol. 23(2), pages 264-286, June.
    4. Isabel Méndez-Fernández & Silvia Lorenzo-Freire & Ignacio García-Jurado & Julián Costa & Luisa Carpente, 2020. "A heuristic approach to the task planning problem in a home care business," Health Care Management Science, Springer, vol. 23(4), pages 556-570, December.
    5. Mustafa Demirbilek & Juergen Branke & Arne K. Strauss, 2021. "Home healthcare routing and scheduling of multiple nurses in a dynamic environment," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 253-280, March.
    6. Lin, Meiyan & Ma, Lijun & Ying, Chengshuo, 2021. "Matching daily home health-care demands with supply in service-sharing platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gomes, Maria Isabel & Ramos, Tânia Rodrigues Pereira, 2019. "Modelling and (re-)planning periodic home social care services with loyalty and non-loyalty features," European Journal of Operational Research, Elsevier, vol. 277(1), pages 284-299.
    2. Paola Cappanera & Maria Grazia Scutellà, 2015. "Joint Assignment, Scheduling, and Routing Models to Home Care Optimization: A Pattern-Based Approach," Transportation Science, INFORMS, vol. 49(4), pages 830-852, November.
    3. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    4. Semih Yalçındağ & Andrea Matta & Evren Şahin & J. George Shanthikumar, 2016. "The patient assignment problem in home health care: using a data-driven method to estimate the travel times of care givers," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 304-335, June.
    5. Biao Yuan & Zhibin Jiang, 2017. "Disruption Management for the Real-Time Home Caregiver Scheduling and Routing Problem," Sustainability, MDPI, Open Access Journal, vol. 9(12), pages 1-15, November.
    6. Gang Du & Xi Liang & Chuanwang Sun, 2017. "Scheduling Optimization of Home Health Care Service Considering Patients’ Priorities and Time Windows," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-22, February.
    7. Gmira, Maha & Gendreau, Michel & Lodi, Andrea & Potvin, Jean-Yves, 2021. "Tabu search for the time-dependent vehicle routing problem with time windows on a road network," European Journal of Operational Research, Elsevier, vol. 288(1), pages 129-140.
    8. Jamal Abdul Nasir & Chuangyin Dang, 2020. "Quantitative thresholds based decision support approach for the home health care scheduling and routing problem," Health Care Management Science, Springer, vol. 23(2), pages 215-238, June.
    9. Rincon-Garcia, Nicolas & Waterson, Ben & Cherrett, Tom J. & Salazar-Arrieta, Fernando, 2020. "A metaheuristic for the time-dependent vehicle routing problem considering driving hours regulations – An application in city logistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 429-446.
    10. J. Arturo Castillo-Salazar & Dario Landa-Silva & Rong Qu, 2016. "Workforce scheduling and routing problems: literature survey and computational study," Annals of Operations Research, Springer, vol. 239(1), pages 39-67, April.
    11. Rifki, Omar & Chiabaut, Nicolas & Solnon, Christine, 2020. "On the impact of spatio-temporal granularity of traffic conditions on the quality of pickup and delivery optimal tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    12. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    13. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    14. Timo Gschwind, 2019. "Route feasibility testing and forward time slack for the Synchronized Pickup and Delivery Problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 491-512, June.
    15. Sacramento Quintanilla & Francisco Ballestín & Ángeles Pérez, 2020. "Mathematical models to improve the current practice in a Home Healthcare Unit," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 43-74, March.
    16. Avraham, Edison & Raviv, Tal, 2020. "The data-driven time-dependent traveling salesperson problem," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 25-40.
    17. Gang Du & Luyao Zheng & Xiaoling Ouyang, 2019. "Real-time scheduling optimization considering the unexpected events in home health care," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 196-220, January.
    18. Mike Hewitt & Maciek Nowak & Nisha Nataraj, 2016. "Planning Strategies for Home Health Care Delivery," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-26, October.
    19. Huang, Yixiao & Zhao, Lei & Van Woensel, Tom & Gross, Jean-Philippe, 2017. "Time-dependent vehicle routing problem with path flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 169-195.
    20. Hamza Ben Ticha & Nabil Absi & Dominique Feillet & Alain Quilliot & Tom Woensel, 2021. "The Time-Dependent Vehicle Routing Problem with Time Windows and Road-Network Information," SN Operations Research Forum, Springer, vol. 2(1), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:28:y:2016:i:3:d:10.1007_s10696-015-9227-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.