IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v277y2019i1p284-299.html
   My bibliography  Save this article

Modelling and (re-)planning periodic home social care services with loyalty and non-loyalty features

Author

Listed:
  • Gomes, Maria Isabel
  • Ramos, Tânia Rodrigues Pereira

Abstract

The aging population alongside little availability of informal care are two of the several factors leading to an increased need for assisted living support. In this work, we tackle a home social care service problem, motivated by two real case studies where a new loyalty scheme must be considered: within a week, patient-caregiver loyalty should be pursued but, between weeks, the caregivers must rotate among patients (non-loyalty). In addition, a common situation in this kind of service is also addressed: the need of a constant re-planning caused by the leaving of patients and the arrival of new ones. This new plan should be such that minimum disturbance is caused to the visiting hours of current patients, the caregivers’ travelling time between visits is minimized, and the workload is balanced among caregivers. A multi-objective optimization approach based on mixed-integer models is developed. Results on the two real case studies show that both institutions can efficiently re-plan their activities without much disturbance on the visits of their patients, and with a patient-caregiver loyalty scheme suiting their needs.

Suggested Citation

  • Gomes, Maria Isabel & Ramos, Tânia Rodrigues Pereira, 2019. "Modelling and (re-)planning periodic home social care services with loyalty and non-loyalty features," European Journal of Operational Research, Elsevier, vol. 277(1), pages 284-299.
  • Handle: RePEc:eee:ejores:v:277:y:2019:i:1:p:284-299
    DOI: 10.1016/j.ejor.2019.01.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719300967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.01.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    2. Rasmussen, Matias Sevel & Justesen, Tor & Dohn, Anders & Larsen, Jesper, 2012. "The Home Care Crew Scheduling Problem: Preference-based visit clustering and temporal dependencies," European Journal of Operational Research, Elsevier, vol. 219(3), pages 598-610.
    3. Carello, Giuliana & Lanzarone, Ettore, 2014. "A cardinality-constrained robust model for the assignment problem in Home Care services," European Journal of Operational Research, Elsevier, vol. 236(2), pages 748-762.
    4. Patrik Eveborn & Mikael Rönnqvist & Helga Einarsdóttir & Mats Eklund & Karin Lidén & Marie Almroth, 2009. "Operations Research Improves Quality and Efficiency in Home Care," Interfaces, INFORMS, vol. 39(1), pages 18-34, February.
    5. Koeleman, P.M. & Bhulai, S. & van Meersbergen, M., 2012. "Optimal patient and personnel scheduling policies for care-at-home service facilities," European Journal of Operational Research, Elsevier, vol. 219(3), pages 557-563.
    6. Sachidanand V. Begur & David M. Miller & Jerry R. Weaver, 1997. "An Integrated Spatial DSS for Scheduling and Routing Home-Health-Care Nurses," Interfaces, INFORMS, vol. 27(4), pages 35-48, August.
    7. Nickel, Stefan & Schröder, Michael & Steeg, Jörg, 2012. "Mid-term and short-term planning support for home health care services," European Journal of Operational Research, Elsevier, vol. 219(3), pages 574-587.
    8. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    9. Eveborn, Patrik & Flisberg, Patrik & Ronnqvist, Mikael, 2006. "Laps Care--an operational system for staff planning of home care," European Journal of Operational Research, Elsevier, vol. 171(3), pages 962-976, June.
    10. Dorota Mankowska & Frank Meisel & Christian Bierwirth, 2014. "The home health care routing and scheduling problem with interdependent services," Health Care Management Science, Springer, vol. 17(1), pages 15-30, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Meiyan & Ma, Lijun & Ying, Chengshuo, 2021. "Matching daily home health-care demands with supply in service-sharing platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gang Du & Luyao Zheng & Xiaoling Ouyang, 2019. "Real-time scheduling optimization considering the unexpected events in home health care," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 196-220, January.
    2. Semih Yalçındağ & Andrea Matta & Evren Şahin & J. George Shanthikumar, 2016. "The patient assignment problem in home health care: using a data-driven method to estimate the travel times of care givers," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 304-335, June.
    3. Gang Du & Xi Liang & Chuanwang Sun, 2017. "Scheduling Optimization of Home Health Care Service Considering Patients’ Priorities and Time Windows," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-22, February.
    4. Jamal Abdul Nasir & Chuangyin Dang, 2020. "Quantitative thresholds based decision support approach for the home health care scheduling and routing problem," Health Care Management Science, Springer, vol. 23(2), pages 215-238, June.
    5. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    6. Mike Hewitt & Maciek Nowak & Nisha Nataraj, 2016. "Planning Strategies for Home Health Care Delivery," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-26, October.
    7. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    8. Lin, Meiyan & Ma, Lijun & Ying, Chengshuo, 2021. "Matching daily home health-care demands with supply in service-sharing platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    9. Klaus-Dieter Rest & Patrick Hirsch, 2016. "Daily scheduling of home health care services using time-dependent public transport," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 495-525, September.
    10. Biao Yuan & Zhibin Jiang, 2017. "Disruption Management for the Real-Time Home Caregiver Scheduling and Routing Problem," Sustainability, MDPI, Open Access Journal, vol. 9(12), pages 1-15, November.
    11. Paola Cappanera & Maria Grazia Scutellà, 2015. "Joint Assignment, Scheduling, and Routing Models to Home Care Optimization: A Pattern-Based Approach," Transportation Science, INFORMS, vol. 49(4), pages 830-852, November.
    12. Cappanera, Paola & Scutellà, Maria Grazia & Nervi, Federico & Galli, Laura, 2018. "Demand uncertainty in robust Home Care optimization," Omega, Elsevier, vol. 80(C), pages 95-110.
    13. Sacramento Quintanilla & Francisco Ballestín & Ángeles Pérez, 2020. "Mathematical models to improve the current practice in a Home Healthcare Unit," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 43-74, March.
    14. Isabel Méndez-Fernández & Silvia Lorenzo-Freire & Ignacio García-Jurado & Julián Costa & Luisa Carpente, 2020. "A heuristic approach to the task planning problem in a home care business," Health Care Management Science, Springer, vol. 23(4), pages 556-570, December.
    15. J. Arturo Castillo-Salazar & Dario Landa-Silva & Rong Qu, 2016. "Workforce scheduling and routing problems: literature survey and computational study," Annals of Operations Research, Springer, vol. 239(1), pages 39-67, April.
    16. Zhan, Yang & Wang, Zizhuo & Wan, Guohua, 2021. "Home service routing and appointment scheduling with stochastic service times," European Journal of Operational Research, Elsevier, vol. 288(1), pages 98-110.
    17. Shi, Yong & Boudouh, Toufik & Grunder, Olivier, 2019. "A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 52-95.
    18. Mosquera, Federico & Smet, Pieter & Vanden Berghe, Greet, 2019. "Flexible home care scheduling," Omega, Elsevier, vol. 83(C), pages 80-95.
    19. Mustafa Demirbilek & Juergen Branke & Arne Strauss, 2019. "Dynamically accepting and scheduling patients for home healthcare," Health Care Management Science, Springer, vol. 22(1), pages 140-155, March.
    20. Rabeh Redjem & Eric Marcon, 2016. "Operations management in the home care services: a heuristic for the caregivers’ routing problem," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 280-303, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:277:y:2019:i:1:p:284-299. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.