IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v80y2018icp95-110.html
   My bibliography  Save this article

Demand uncertainty in robust Home Care optimization

Author

Listed:
  • Cappanera, Paola
  • Scutellà, Maria Grazia
  • Nervi, Federico
  • Galli, Laura

Abstract

We study the Home Care Problem under uncertainty. Home Care refers to medical, paramedical and social services that may be delivered to patient homes. The term includes several aspects involved in the planning of home care services, such as caregiver-to-patient assignment, scheduling of patient requests, and caregiver routing. In Home Care, cancellation of requests and additional demand for known or new patients are very frequent. Thus, managing demand uncertainty is of paramount importance in limiting service disruptions that might occur when such events realize. We address uncertainty of patient demand over a multiple-day time horizon, when assignment, scheduling and routing decisions are taken jointly, both from a methodological and a computational perspective. In fact, we propose a non-standard cardinality-constrained robust approach, analyse its properties, and report the results of a wide experimentation on real-life instances. The obtained results show that, for instances of moderate size, the approach is able to efficiently determine robust solutions of good quality in terms of balancing among caregivers and number of uncertain requests that can be managed. Also, the robustness of the solutions with respect to possible realizations of uncertain requests, evaluated on a small subset of instances, appears to be significant. Furthermore, preliminary experiments on a decomposition method, obtained from the robust one by fixing the scheduling decisions, show a drastic gain in computational efficiency, with the determination of robust solutions of still good quality. Therefore, the approach appears to be very promising to cope with robustness even on Home Care instances of larger size.

Suggested Citation

  • Cappanera, Paola & Scutellà, Maria Grazia & Nervi, Federico & Galli, Laura, 2018. "Demand uncertainty in robust Home Care optimization," Omega, Elsevier, vol. 80(C), pages 95-110.
  • Handle: RePEc:eee:jomega:v:80:y:2018:i:c:p:95-110
    DOI: 10.1016/j.omega.2017.08.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048316309008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2017.08.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Holte, Matias & Mannino, Carlo, 2013. "The implementor/adversary algorithm for the cyclic and robust scheduling problem in health-care," European Journal of Operational Research, Elsevier, vol. 226(3), pages 551-559.
    3. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    4. A Hertz & N Lahrichi, 2009. "A patient assignment algorithm for home care services," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 481-495, April.
    5. Rasmussen, Matias Sevel & Justesen, Tor & Dohn, Anders & Larsen, Jesper, 2012. "The Home Care Crew Scheduling Problem: Preference-based visit clustering and temporal dependencies," European Journal of Operational Research, Elsevier, vol. 219(3), pages 598-610.
    6. Carello, Giuliana & Lanzarone, Ettore, 2014. "A cardinality-constrained robust model for the assignment problem in Home Care services," European Journal of Operational Research, Elsevier, vol. 236(2), pages 748-762.
    7. C. Rodriguez & T. Garaix & X. Xie & V. Augusto, 2015. "Staff dimensioning in homecare services with uncertain demands," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7396-7410, December.
    8. Chris Groër & Bruce Golden & Edward Wasil, 2009. "The Consistent Vehicle Routing Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 630-643, February.
    9. Semih Yalçindag & Paola Cappanera & Maria Grazia Scutellà & Evren Sahin & Andrea Matta, 2016. "Pattern-based decompositions for human resource planning in home health care services," Post-Print hal-01736734, HAL.
    10. M. Gamst & T. Sejr Jensen, 2012. "A branch-and-price algorithm for the long-term home care scheduling problem," Operations Research Proceedings, in: Diethard Klatte & Hans-Jakob Lüthi & Karl Schmedders (ed.), Operations Research Proceedings 2011, edition 127, pages 483-488, Springer.
    11. Nickel, Stefan & Schröder, Michael & Steeg, Jörg, 2012. "Mid-term and short-term planning support for home health care services," European Journal of Operational Research, Elsevier, vol. 219(3), pages 574-587.
    12. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2010. "The Vehicle Routing Problem with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 44(4), pages 474-492, November.
    13. Eveborn, Patrik & Flisberg, Patrik & Ronnqvist, Mikael, 2006. "Laps Care--an operational system for staff planning of home care," European Journal of Operational Research, Elsevier, vol. 171(3), pages 962-976, June.
    14. Paola Cappanera & Maria Grazia Scutellà, 2015. "Joint Assignment, Scheduling, and Routing Models to Home Care Optimization: A Pattern-Based Approach," Transportation Science, INFORMS, vol. 49(4), pages 830-852, November.
    15. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    16. Gilbert Laporte & FranÇois V. Louveaux & Luc van Hamme, 2002. "An Integer L -Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 50(3), pages 415-423, June.
    17. Dorota Mankowska & Frank Meisel & Christian Bierwirth, 2014. "The home health care routing and scheduling problem with interdependent services," Health Care Management Science, Springer, vol. 17(1), pages 15-30, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Aguiar, Ana Raquel Pena & Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel, 2023. "Home care routing and scheduling problem with teams’ synchronization," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    2. Pahlevani, Delaram & Abbasi, Babak & Hearne, John W. & Eberhard, Andrew, 2022. "A cluster-based algorithm for home health care planning: A case study in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    3. Lin, Meiyan & Ma, Lijun & Ying, Chengshuo, 2021. "Matching daily home health-care demands with supply in service-sharing platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    4. Jalel Euchi & Malek Masmoudi & Patrick Siarry, 2022. "Home health care routing and scheduling problems: a literature review," 4OR, Springer, vol. 20(3), pages 351-389, September.
    5. Paola Cappanera & Maria Grazia Scutellà, 2022. "Addressing consistency and demand uncertainty in the Home Care planning problem," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 1-39, March.
    6. Naderi, Bahman & Begen, Mehmet A. & Zaric, Gregory S. & Roshanaei, Vahid, 2023. "A novel and efficient exact technique for integrated staffing, assignment, routing, and scheduling of home care services under uncertainty," Omega, Elsevier, vol. 116(C).
    7. Bruno P. Bruck & Filippo Castegini & Jean-François Cordeau & Manuel Iori & Tommaso Poncemi & Dario Vezzali, 2020. "A Decision Support System for Attended Home Services," Interfaces, INFORMS, vol. 50(2), pages 137-152, March.
    8. Zheng, Chenyang & Wang, Shuming & Li, Ningxin & Wu, Yuanhao, 2021. "Stochastic joint homecare service and capacity planning with nested decomposition approaches," European Journal of Operational Research, Elsevier, vol. 295(1), pages 203-222.
    9. Moosavi, Amirhossein & Ozturk, Onur & Patrick, Jonathan, 2022. "Staff scheduling for residential care under pandemic conditions: The case of COVID-19," Omega, Elsevier, vol. 112(C).
    10. Amir M. Fathollahi-Fard & Abbas Ahmadi & Behrooz Karimi, 2021. "Multi-Objective Optimization of Home Healthcare with Working-Time Balancing and Care Continuity," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    11. Vahid Akbari & İhsan Sadati & F. Sibel Salman & Davood Shiri, 2023. "Minimizing total weighted latency in home healthcare routing and scheduling with patient prioritization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 807-852, September.
    12. Cho, David D. & Stauffer, Jon M., 2022. "Tele-medicine question response service: Analysis of benefits and costs," Omega, Elsevier, vol. 111(C).
    13. Restrepo, María I. & Rousseau, Louis-Martin & Vallée, Jonathan, 2020. "Home healthcare integrated staffing and scheduling," Omega, Elsevier, vol. 95(C).
    14. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.
    15. Sinem Kınay Savaşer & Bahar Yetis Kara, 2022. "Mobile healthcare services in rural areas: an application with periodic location routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 875-910, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Cappanera & Maria Grazia Scutellà, 2022. "Addressing consistency and demand uncertainty in the Home Care planning problem," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 1-39, March.
    2. Naderi, Bahman & Begen, Mehmet A. & Zaric, Gregory S. & Roshanaei, Vahid, 2023. "A novel and efficient exact technique for integrated staffing, assignment, routing, and scheduling of home care services under uncertainty," Omega, Elsevier, vol. 116(C).
    3. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    4. Pahlevani, Delaram & Abbasi, Babak & Hearne, John W. & Eberhard, Andrew, 2022. "A cluster-based algorithm for home health care planning: A case study in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    5. Semih Yalçındağ & Andrea Matta & Evren Şahin & J. George Shanthikumar, 2016. "The patient assignment problem in home health care: using a data-driven method to estimate the travel times of care givers," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 304-335, June.
    6. Mike Hewitt & Maciek Nowak & Nisha Nataraj, 2016. "Planning Strategies for Home Health Care Delivery," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-26, October.
    7. Jamal Abdul Nasir & Chuangyin Dang, 2018. "Solving a More Flexible Home Health Care Scheduling and Routing Problem with Joint Patient and Nursing Staff Selection," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    8. Gomes, Maria Isabel & Ramos, Tânia Rodrigues Pereira, 2019. "Modelling and (re-)planning periodic home social care services with loyalty and non-loyalty features," European Journal of Operational Research, Elsevier, vol. 277(1), pages 284-299.
    9. de Aguiar, Ana Raquel Pena & Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel, 2023. "Home care routing and scheduling problem with teams’ synchronization," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    10. Gang Du & Xi Liang & Chuanwang Sun, 2017. "Scheduling Optimization of Home Health Care Service Considering Patients’ Priorities and Time Windows," Sustainability, MDPI, vol. 9(2), pages 1-22, February.
    11. Gang Du & Luyao Zheng & Xiaoling Ouyang, 2019. "Real-time scheduling optimization considering the unexpected events in home health care," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 196-220, January.
    12. Amir M. Fathollahi-Fard & Abbas Ahmadi & Behrooz Karimi, 2021. "Multi-Objective Optimization of Home Healthcare with Working-Time Balancing and Care Continuity," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    13. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    14. Biao Yuan & Zhibin Jiang, 2017. "Disruption Management for the Real-Time Home Caregiver Scheduling and Routing Problem," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    15. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    16. Jamal Abdul Nasir & Chuangyin Dang, 2020. "Quantitative thresholds based decision support approach for the home health care scheduling and routing problem," Health Care Management Science, Springer, vol. 23(2), pages 215-238, June.
    17. Lin, Meiyan & Ma, Lijun & Ying, Chengshuo, 2021. "Matching daily home health-care demands with supply in service-sharing platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    18. Chrysanthos E. Gounaris & Wolfram Wiesemann & Christodoulos A. Floudas, 2013. "The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty," Operations Research, INFORMS, vol. 61(3), pages 677-693, June.
    19. Restrepo, María I. & Rousseau, Louis-Martin & Vallée, Jonathan, 2020. "Home healthcare integrated staffing and scheduling," Omega, Elsevier, vol. 95(C).
    20. Carello, Giuliana & Lanzarone, Ettore, 2014. "A cardinality-constrained robust model for the assignment problem in Home Care services," European Journal of Operational Research, Elsevier, vol. 236(2), pages 748-762.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:80:y:2018:i:c:p:95-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.