IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v111y2022ics0305048322000718.html
   My bibliography  Save this article

Tele-medicine question response service: Analysis of benefits and costs

Author

Listed:
  • Cho, David D.
  • Stauffer, Jon M.

Abstract

Medicare and other healthcare payers are increasing reimbursement for tele-monitoring with in-home devices, but have not expanded reimbursement to include tele-medicine question response services. We model the costs and benefits of providing these services in a multi-period setting for healthcare payers and providers compared to a central planner baseline model. We also consider how patients’ risk level and potentially shorter skilled nursing facility stays can increase the benefit of these services. While many payers worry that reimbursing for question response services will cause excessive payouts, we find that payers would benefit from providing a per-call subsidy to providers to incentivize optimal question response service staffing levels. We also find that payers could provide a per-patient subsidy for patients discharged early from skilled nursing facilities that would more than cover the costs of providing the question response service for all patients. These models are grounded in data and multiple discussions with regional home health providers that provide these question response services.

Suggested Citation

  • Cho, David D. & Stauffer, Jon M., 2022. "Tele-medicine question response service: Analysis of benefits and costs," Omega, Elsevier, vol. 111(C).
  • Handle: RePEc:eee:jomega:v:111:y:2022:i:c:s0305048322000718
    DOI: 10.1016/j.omega.2022.102664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048322000718
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrie Queenan & Kellas Cameron & Alan Snell & Julia Smalley & Nitin Joglekar, 2019. "Patient Heal Thyself: Reducing Hospital Readmissions with Technology‐Enabled Continuity of Care and Patient Activation," Production and Operations Management, Production and Operations Management Society, vol. 28(11), pages 2841-2853, November.
    2. Cory S. Capps & Dennis W. Carlton & Guy David, 2020. "Antitrust Treatment Of Nonprofits: Should Hospitals Receive Special Care?," Economic Inquiry, Western Economic Association International, vol. 58(3), pages 1183-1199, July.
    3. Bürgy, Reinhard & Michon-Lacaze, Hélène & Desaulniers, Guy, 2019. "Employee scheduling with short demand perturbations and extensible shifts," Omega, Elsevier, vol. 89(C), pages 177-192.
    4. Jonathan E. Helm & Adel Alaeddini & Jon M. Stauffer & Kurt M. Bretthauer & Ted A. Skolarus, 2016. "Reducing Hospital Readmissions by Integrating Empirical Prediction with Resource Optimization," Production and Operations Management, Production and Operations Management Society, vol. 25(2), pages 233-257, February.
    5. Jeong‐ha (Cath) Oh & Zhiqiang (Eric) Zheng & Indranil R. Bardhan, 2018. "Sooner or Later? Health Information Technology, Length of Stay, and Readmission Risk," Production and Operations Management, Production and Operations Management Society, vol. 27(11), pages 2038-2053, November.
    6. Xiang Liu & Michael Hu & Jonathan E. Helm & Mariel S. Lavieri & Ted A. Skolarus, 2018. "Missed Opportunities in Preventing Hospital Readmissions: Redesigning Post‐Discharge Checkup Policies," Production and Operations Management, Production and Operations Management Society, vol. 27(12), pages 2226-2250, December.
    7. Vincent W. Slaugh & Alan A. Scheller‐Wolf & Sridhar R. Tayur, 2018. "Consistent Staffing for Long‐Term Care through On‐Call Pools," Production and Operations Management, Production and Operations Management Society, vol. 27(12), pages 2144-2161, December.
    8. Cappanera, Paola & Scutellà, Maria Grazia & Nervi, Federico & Galli, Laura, 2018. "Demand uncertainty in robust Home Care optimization," Omega, Elsevier, vol. 80(C), pages 95-110.
    9. Mattia, Sara & Rossi, Fabrizio & Servilio, Mara & Smriglio, Stefano, 2017. "Staffing and scheduling flexible call centers by two-stage robust optimization," Omega, Elsevier, vol. 72(C), pages 25-37.
    10. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    11. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    12. Itai Gurvich & James Luedtke & Tolga Tezcan, 2010. "Staffing Call Centers with Uncertain Demand Forecasts: A Chance-Constrained Optimization Approach," Management Science, INFORMS, vol. 56(7), pages 1093-1115, July.
    13. J. Michael Harrison & Assaf Zeevi, 2005. "A Method for Staffing Large Call Centers Based on Stochastic Fluid Models," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 20-36, September.
    14. Restrepo, María I. & Rousseau, Louis-Martin & Vallée, Jonathan, 2020. "Home healthcare integrated staffing and scheduling," Omega, Elsevier, vol. 95(C).
    15. Dennis J. Zhang & Itai Gurvich & Jan A. Van Mieghem & Eric Park & Robert S. Young & Mark V. Williams, 2016. "Hospital Readmissions Reduction Program: An Economic and Operational Analysis," Management Science, INFORMS, vol. 62(11), pages 3351-3371, November.
    16. David D. Cho & Kurt M. Bretthauer & Kyle D. Cattani & Alex F. Mills, 2019. "Behavior Aware Service Staffing," Production and Operations Management, Production and Operations Management Society, vol. 28(5), pages 1285-1304, May.
    17. Kibaek Kim & Sanjay Mehrotra, 2015. "A Two-Stage Stochastic Integer Programming Approach to Integrated Staffing and Scheduling with Application to Nurse Management," Operations Research, INFORMS, vol. 63(6), pages 1431-1451, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    2. Tolga Tezcan & Banafsheh Behzad, 2012. "Robust Design and Control of Call Centers with Flexible Interactive Voice Response Systems," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 386-401, July.
    3. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    4. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    5. Noa Zychlinski, 2023. "Applications of fluid models in service operations management," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 161-185, February.
    6. Ta, Thuy Anh & Chan, Wyean & Bastin, Fabian & L’Ecuyer, Pierre, 2021. "A simulation-based decomposition approach for two-stage staffing optimization in call centers under arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 293(3), pages 966-979.
    7. Boris N. Oreshkin & Nazim Réegnard & Pierre L’Ecuyer, 2016. "Rate-Based Daily Arrival Process Models with Application to Call Centers," Operations Research, INFORMS, vol. 64(2), pages 510-527, April.
    8. Noah Gans & Haipeng Shen & Yong-Pin Zhou & Nikolay Korolev & Alan McCord & Herbert Ristock, 2015. "Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 571-588, October.
    9. Restrepo, María I. & Rousseau, Louis-Martin & Vallée, Jonathan, 2020. "Home healthcare integrated staffing and scheduling," Omega, Elsevier, vol. 95(C).
    10. Mattia, Sara & Rossi, Fabrizio & Servilio, Mara & Smriglio, Stefano, 2017. "Staffing and scheduling flexible call centers by two-stage robust optimization," Omega, Elsevier, vol. 72(C), pages 25-37.
    11. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    12. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    13. Achal Bassamboo & Assaf Zeevi, 2009. "On a Data-Driven Method for Staffing Large Call Centers," Operations Research, INFORMS, vol. 57(3), pages 714-726, June.
    14. Kuang Xu & Yuan Zhong, 2020. "Information and Memory in Dynamic Resource Allocation," Operations Research, INFORMS, vol. 68(6), pages 1698-1715, November.
    15. Francis de Véricourt & Otis B. Jennings, 2008. "Dimensioning Large-Scale Membership Services," Operations Research, INFORMS, vol. 56(1), pages 173-187, February.
    16. Kraig Delana & Nicos Savva & Tolga Tezcan, 2021. "Proactive Customer Service: Operational Benefits and Economic Frictions," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 70-87, 1-2.
    17. Britt W. J. Mathijsen & A. J. E. M. Janssen & Johan S. H. Leeuwaarden & Bert Zwart, 2018. "Robust heavy-traffic approximations for service systems facing overdispersed demand," Queueing Systems: Theory and Applications, Springer, vol. 90(3), pages 257-289, December.
    18. Johannes S. Kunz & Carol Propper & Kevin E. Staub & Rainer Winkelmann, 2023. "Assessing the Quality of Public Services: For-profits, Chains, and Concentration in the Hospital Market," Papers 2023-01, Centre for Health Economics, Monash University.
    19. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    20. Adan, Ivo J.B.F. & Boon, Marko A.A. & Weiss, Gideon, 2019. "Design heuristic for parallel many server systems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 259-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:111:y:2022:i:c:s0305048322000718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.