IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v293y2021i3p966-979.html
   My bibliography  Save this article

A simulation-based decomposition approach for two-stage staffing optimization in call centers under arrival rate uncertainty

Author

Listed:
  • Ta, Thuy Anh
  • Chan, Wyean
  • Bastin, Fabian
  • L’Ecuyer, Pierre

Abstract

We study a solution approach for a staffing problem in multi-skill call centers. The objective is to find a minimal-cost staffing solution while meeting a target level for the quality of service to customers. We consider a common situation in which the arrival rates are unobserved random variables for which preliminary forecasts are available in a first stage when making the initial staffing decision. In a second stage, more accurate forecasts are obtained and the staffing may have to be modified at a cost, to meet the constraints. This leads to a challenging two-stage stochastic optimization problem in which the quantities involved in the (nonlinear) constraints can only be estimated via simulation, so several independent simulations are required for each first-level scenario. We propose a solution approach that combines sample average approximation with a decomposition method. We provide numerical illustrations to show the practical efficiency of our approach. The proposed method could be adapted to several other staffing problems with uncertain demand, e.g., in retail stores, restaurants, healthcare facilities, and other types of service systems.

Suggested Citation

  • Ta, Thuy Anh & Chan, Wyean & Bastin, Fabian & L’Ecuyer, Pierre, 2021. "A simulation-based decomposition approach for two-stage staffing optimization in call centers under arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 293(3), pages 966-979.
  • Handle: RePEc:eee:ejores:v:293:y:2021:i:3:p:966-979
    DOI: 10.1016/j.ejor.2020.12.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172031095X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.12.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Athanassios N. Avramidis & Alexandre Deslauriers & Pierre L'Ecuyer, 2004. "Modeling Daily Arrivals to a Telephone Call Center," Management Science, INFORMS, vol. 50(7), pages 896-908, July.
    2. Athanassios Avramidis & Wyean Chan & Pierre L'Ecuyer, 2009. "Staffing multi-skill call centers via search methods and a performance approximation," IISE Transactions, Taylor & Francis Journals, vol. 41(6), pages 483-497.
    3. Wyean Chan & Ger Koole & Pierre L'Ecuyer, 2014. "Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 544-560, October.
    4. Linda V. Green & Peter J. Kolesar & João Soares, 2001. "Improving the Sipp Approach for Staffing Service Systems That Have Cyclic Demands," Operations Research, INFORMS, vol. 49(4), pages 549-564, August.
    5. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    6. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    7. Boris N. Oreshkin & Nazim Réegnard & Pierre L’Ecuyer, 2016. "Rate-Based Daily Arrival Process Models with Application to Call Centers," Operations Research, INFORMS, vol. 64(2), pages 510-527, April.
    8. Itai Gurvich & James Luedtke & Tolga Tezcan, 2010. "Staffing Call Centers with Uncertain Demand Forecasts: A Chance-Constrained Optimization Approach," Management Science, INFORMS, vol. 56(7), pages 1093-1115, July.
    9. NEMHAUSER, George L. & WOLSEY, Laurence A., 1990. "A recursive procedure to generate all cuts for 0-1 mixed integer programs," LIDAM Reprints CORE 894, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    11. Shuang Qing Liao & Ger Koole & Christian van Delft & Oualid Jouini, 2012. "Staffing a call center with uncertain non-stationary arrival rate and flexibility," Post-Print hal-00713790, HAL.
    12. Oualid Jouini & Ger Koole & Alex Roubos, 2013. "Performance indicators for call centers with impatient customers," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 341-354.
    13. Auke Pot & Sandjai Bhulai & Ger Koole, 2008. "A Simple Staffing Method for Multiskill Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 421-428, December.
    14. S. Liao & Christian van Delft & J.-P. Vial, 2013. "Distributionally robust workforce scheduling in call centres with uncertain arrival rates," Post-Print hal-01069123, HAL.
    15. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    16. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    17. Noah Gans & Haipeng Shen & Yong-Pin Zhou & Nikolay Korolev & Alan McCord & Herbert Ristock, 2015. "Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 571-588, October.
    18. Rodney B. Wallace & Ward Whitt, 2005. "A Staffing Algorithm for Call Centers with Skill-Based Routing," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 276-294, August.
    19. Robbins, Thomas R. & Harrison, Terry P., 2010. "A stochastic programming model for scheduling call centers with global Service Level Agreements," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1608-1619, December.
    20. Ibrahim, Rouba & L’Ecuyer, Pierre & Shen, Haipeng & Thiongane, Mamadou, 2016. "Inter-dependent, heterogeneous, and time-varying service-time distributions in call centers," European Journal of Operational Research, Elsevier, vol. 250(2), pages 480-492.
    21. J. Michael Harrison & Assaf Zeevi, 2005. "A Method for Staffing Large Call Centers Based on Stochastic Fluid Models," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 20-36, September.
    22. Júlíus Atlason & Marina Epelman & Shane Henderson, 2004. "Call Center Staffing with Simulation and Cutting Plane Methods," Annals of Operations Research, Springer, vol. 127(1), pages 333-358, March.
    23. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    24. Júlíus Atlason & Marina A. Epelman & Shane G. Henderson, 2008. "Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods," Management Science, INFORMS, vol. 54(2), pages 295-309, February.
    25. Nabil Channouf & Pierre L’Ecuyer & Armann Ingolfsson & Athanassios Avramidis, 2007. "The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta," Health Care Management Science, Springer, vol. 10(1), pages 25-45, February.
    26. Avramidis, Athanassios N. & Chan, Wyean & Gendreau, Michel & L'Ecuyer, Pierre & Pisacane, Ornella, 2010. "Optimizing daily agent scheduling in a multiskill call center," European Journal of Operational Research, Elsevier, vol. 200(3), pages 822-832, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    2. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    3. Mattia, Sara & Rossi, Fabrizio & Servilio, Mara & Smriglio, Stefano, 2017. "Staffing and scheduling flexible call centers by two-stage robust optimization," Omega, Elsevier, vol. 72(C), pages 25-37.
    4. Tien Thanh Dam & Thuy Anh Ta & Tien Mai, 2022. "Joint chance-constrained staffing optimization in multi-skill call centers," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 354-378, August.
    5. Örmeci, E. Lerzan & Salman, F. Sibel & Yücel, Eda, 2014. "Staff rostering in call centers providing employee transportation," Omega, Elsevier, vol. 43(C), pages 41-53.
    6. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    7. Wyean Chan & Ger Koole & Pierre L'Ecuyer, 2014. "Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 544-560, October.
    8. Noah Gans & Haipeng Shen & Yong-Pin Zhou & Nikolay Korolev & Alan McCord & Herbert Ristock, 2015. "Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 571-588, October.
    9. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    10. Robbins, Thomas R. & Harrison, Terry P., 2010. "A stochastic programming model for scheduling call centers with global Service Level Agreements," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1608-1619, December.
    11. Boris N. Oreshkin & Nazim Réegnard & Pierre L’Ecuyer, 2016. "Rate-Based Daily Arrival Process Models with Application to Call Centers," Operations Research, INFORMS, vol. 64(2), pages 510-527, April.
    12. Barış Ata & Xiaoshan Peng, 2020. "An Optimal Callback Policy for General Arrival Processes: A Pathwise Analysis," Operations Research, INFORMS, vol. 68(2), pages 327-347, March.
    13. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    14. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    15. Achal Bassamboo & Assaf Zeevi, 2009. "On a Data-Driven Method for Staffing Large Call Centers," Operations Research, INFORMS, vol. 57(3), pages 714-726, June.
    16. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    17. Eugene Furman & Adam Diamant & Murat Kristal, 2021. "Customer Acquisition and Retention: A Fluid Approach for Staffing," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4236-4257, November.
    18. Avramidis, Athanassios N. & Chan, Wyean & Gendreau, Michel & L'Ecuyer, Pierre & Pisacane, Ornella, 2010. "Optimizing daily agent scheduling in a multiskill call center," European Journal of Operational Research, Elsevier, vol. 200(3), pages 822-832, February.
    19. Jaime Miranda & Pablo A. Rey & Antoine Sauré & Richard Weber, 2018. "Metro Uses a Simulation-Optimization Approach to Improve Fare-Collection Shift Scheduling," Interfaces, INFORMS, vol. 48(6), pages 529-542, November.
    20. Heemskerk, M. & Mandjes, M. & Mathijsen, B., 2022. "Staffing for many-server systems facing non-standard arrival processes," European Journal of Operational Research, Elsevier, vol. 296(3), pages 900-913.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:293:y:2021:i:3:p:966-979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.