IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v96y2023i10d10.1140_epjb_s10051-023-00597-w.html
   My bibliography  Save this article

Influence of the boron doping and Stone–Wales defects on the thermoelectric performance of graphene nanoribbons

Author

Listed:
  • Fouad N. Ajeel

    (University of Sfax
    University of Sumer)

  • Ali Ben Ahmed

    (University of Sfax)

Abstract

Density Functional-based Tight-Binding coupled with Non-Equilibrium Green Function calculations is used to study the influence of the boron substitutional doping in the Stone–Wales defect on the structural, electronic, and thermoelectric properties of armchair graphene nanoribbons (AGNRs). The cohesive energies and the defect formation energy of all doped structures are estimated in terms of total energies, and it is also shown that the impurity site plays a part in controlling the characteristics of structures where some sites are most energetically favorable. The enhanced scattering at the boundaries will reduce thermal conductivity, the more asymmetry is, the stronger the boundary effect is. Moreover, Stone–Wales defects and boron substitutional doping may increase the scattering of phonons and thus reduce thermal conductivity. It is noted with boron substitution, a complete electron backscattering area is created in doped structures, and the specific placement of that is determined by the doping sites. We discussed the electron and phonon transport characteristics of doped AGNRs. The results propose that substitutional doping play a significant role in altering the thermoelectric properties of AGNRs with topological defects at specific doping locations, providing a roadmap for the synthesis and design of custom-made AGNRs for specific thermoelectricboundary effect is. Moreover, Stone–Wales defects and boron substitutional doping may increase the scattering of phonons and thus reduce thermal conductivity. It is noted with boron substitution, a complete electron backscattering area is created in doped structures, and the specific placement of that is determined by the doping sites. We discussed the electron and phonon transport characteristics of doped AGNRs. The results propose that substitutional doping play a significant role in altering the thermoelectric properties of AGNRs with topological defects at specific doping locations, providing a roadmap for the synthesis and design of custom-made AGNRs for applications. Graphical abstract Schematic of the thermoelectric device based on (a) pristine AGNRs and (b) AGNRs-SW defect

Suggested Citation

  • Fouad N. Ajeel & Ali Ben Ahmed, 2023. "Influence of the boron doping and Stone–Wales defects on the thermoelectric performance of graphene nanoribbons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(10), pages 1-10, October.
  • Handle: RePEc:spr:eurphb:v:96:y:2023:i:10:d:10.1140_epjb_s10051-023-00597-w
    DOI: 10.1140/epjb/s10051-023-00597-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-023-00597-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-023-00597-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Zeng & J. Zhao & J. W. Wei & H. F. Hu, 2011. "Effect of N doping and Stone-Wales defects on the electronic properties of graphene nanoribbons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 79(3), pages 335-340, February.
    2. Jinming Cai & Pascal Ruffieux & Rached Jaafar & Marco Bieri & Thomas Braun & Stephan Blankenburg & Matthias Muoth & Ari P. Seitsonen & Moussa Saleh & Xinliang Feng & Klaus Müllen & Roman Fasel, 2010. "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, Nature, vol. 466(7305), pages 470-473, July.
    3. Ahmet Emin Senturk & Ahmet Sinan Oktem & Alp Er S. Konukman, 2020. "The influences of boron doping in various defect sites on the thermo-mechanical properties of armchair graphene nanoribbons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(7), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Austin J. Way & Robert M. Jacobberger & Nathan P. Guisinger & Vivek Saraswat & Xiaoqi Zheng & Anjali Suresh & Jonathan H. Dwyer & Padma Gopalan & Michael S. Arnold, 2022. "Graphene nanoribbons initiated from molecularly derived seeds," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    3. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    4. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Ignacio Piquero-Zulaica & Eduardo Corral-Rascón & Xabier Diaz de Cerio & Alexander Riss & Biao Yang & Aran Garcia-Lekue & Mohammad A. Kher-Elden & Zakaria M. Abd El-Fattah & Shunpei Nobusue & Takahiro, 2024. "Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Talal Yusaf & Abu Shadate Faisal Mahamude & Kaniz Farhana & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Mohd Kamal Kamarulzaman & Sivarao Subramonian & Steve Hall & Hayder Abed Dh, 2022. "A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications," Sustainability, MDPI, vol. 14(19), pages 1-32, September.
    7. Zhenzhe Zhang & Hanh D. M. Pham & Dmytro F. Perepichka & Rustam Z. Khaliullin, 2024. "Prediction of highly stable 2D carbon allotropes based on azulenoid kekulene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Zilin Ruan & Baijin Li & Jianchen Lu & Lei Gao & Shijie Sun & Yong Zhang & Jinming Cai, 2023. "Real-space imaging of a phenyl group migration reaction on metal surfaces," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    10. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Junbo Wang & Kaifeng Niu & Huaming Zhu & Chaojie Xu & Chuan Deng & Wenchao Zhao & Peipei Huang & Haiping Lin & Dengyuan Li & Johanna Rosen & Peinian Liu & Francesco Allegretti & Johannes V. Barth & Bi, 2024. "Universal inter-molecular radical transfer reactions on metal surfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Nan Cao & Biao Yang & Alexander Riss & Johanna Rosen & Jonas Björk & Johannes V. Barth, 2023. "On-surface synthesis of enetriynes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Jinyi Wang & Yihan Zhu & Guilin Zhuang & Yayu Wu & Shengda Wang & Pingsen Huang & Guan Sheng & Muqing Chen & Shangfeng Yang & Thomas Greber & Pingwu Du, 2022. "Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:96:y:2023:i:10:d:10.1140_epjb_s10051-023-00597-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.