IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60916-w.html
   My bibliography  Save this article

Synthesis of mixed-dimensional 1D-graphene nanoribbon/2D-CuSe heterostructures with controllable band alignments

Author

Listed:
  • Yong Zhang

    (Kunming University of Science and Technology)

  • Jianchen Lu

    (Kunming University of Science and Technology)

  • Lei Gao

    (Kunming University of Science and Technology)

  • Xin-jing Zhao

    (Xiamen University
    Huaqiao University)

  • Gefei Niu

    (Kunming University of Science and Technology)

  • Xi Geng

    (Kunming University of Science and Technology)

  • Yi Zhang

    (Kunming University of Science and Technology)

  • Shicheng Li

    (Kunming University of Science and Technology)

  • Yuhang Yang

    (Kunming University of Science and Technology)

  • Yuan-Zhi Tan

    (Xiamen University)

  • Shixuan Du

    (Chinese Academy of Sciences)

  • Jinming Cai

    (Kunming University of Science and Technology
    Southwest United Graduate School)

Abstract

One- and two-dimensional (1D-2D) heterostructures have drawn growing interest due to their appealing optoelectronic and catalytic properties. Controlling the band alignment of 1D-2D heterostructures is crucial for their large-scale applications, but remains challenging to achieve experimentally. Here, we report a strategy for the atomically precise fabrication of 1D graphene nanoribbon (GNR) homojunctions and a variety of 1D-GNRs/2D-CuSe vertical heterostructures on Cu(111) substrate. By combining scanning tunneling microscopy, non-contact atomic force microscopy characterizations and density functional theory calculations, the entire preparative process is fully visualized. The GNR homojunctions, which bridge the Cu(111) substrate and the semiconducting CuSe monolayer, show a p-n junction characteristic. The hybrid heterostructures display various band alignments, achieved by varying the width and edge topologies of the GNRs, as well as controlling two different semiconducting phases of the CuSe monolayer. This work offers a promising method to precisely synthesize 1D/2D heterostructures with diverse band alignments for applications in high-performance nanodevices.

Suggested Citation

  • Yong Zhang & Jianchen Lu & Lei Gao & Xin-jing Zhao & Gefei Niu & Xi Geng & Yi Zhang & Shicheng Li & Yuhang Yang & Yuan-Zhi Tan & Shixuan Du & Jinming Cai, 2025. "Synthesis of mixed-dimensional 1D-graphene nanoribbon/2D-CuSe heterostructures with controllable band alignments," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60916-w
    DOI: 10.1038/s41467-025-60916-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60916-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60916-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jingcheng Li & Sofia Sanz & Nestor Merino-Díez & Manuel Vilas-Varela & Aran Garcia-Lekue & Martina Corso & Dimas G. de Oteyza & Thomas Frederiksen & Diego Peña & Jose Ignacio Pascual, 2021. "Topological phase transition in chiral graphene nanoribbons: from edge bands to end states," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Jiadong Zhou & Junhao Lin & Xiangwei Huang & Yao Zhou & Yu Chen & Juan Xia & Hong Wang & Yu Xie & Huimei Yu & Jincheng Lei & Di Wu & Fucai Liu & Qundong Fu & Qingsheng Zeng & Chuang-Han Hsu & Changli , 2018. "A library of atomically thin metal chalcogenides," Nature, Nature, vol. 556(7701), pages 355-359, April.
    3. Young-Woo Son & Marvin L. Cohen & Steven G. Louie, 2006. "Half-metallic graphene nanoribbons," Nature, Nature, vol. 444(7117), pages 347-349, November.
    4. Dongfei Wang & De-Liang Bao & Qi Zheng & Chang-Tian Wang & Shiyong Wang & Peng Fan & Shantanu Mishra & Lei Tao & Yao Xiao & Li Huang & Xinliang Feng & Klaus Müllen & Yu-Yang Zhang & Roman Fasel & Pasc, 2023. "Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Daniel J. Rizzo & Gregory Veber & Ting Cao & Christopher Bronner & Ting Chen & Fangzhou Zhao & Henry Rodriguez & Steven G. Louie & Michael F. Crommie & Felix R. Fischer, 2018. "Topological band engineering of graphene nanoribbons," Nature, Nature, vol. 560(7717), pages 204-208, August.
    6. Jinming Cai & Pascal Ruffieux & Rached Jaafar & Marco Bieri & Thomas Braun & Stephan Blankenburg & Matthias Muoth & Ari P. Seitsonen & Moussa Saleh & Xinliang Feng & Klaus Müllen & Roman Fasel, 2010. "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, Nature, vol. 466(7305), pages 470-473, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ignacio Piquero-Zulaica & Eduardo Corral-Rascón & Xabier Diaz de Cerio & Alexander Riss & Biao Yang & Aran Garcia-Lekue & Mohammad A. Kher-Elden & Zakaria M. Abd El-Fattah & Shunpei Nobusue & Takahiro, 2024. "Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Hiroshi Sakaguchi & Takahiro Kojima & Yingbo Cheng & Shunpei Nobusue & Kazuhiro Fukami, 2024. "Electrochemical on-surface synthesis of a strong electron-donating graphene nanoribbon catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Amelia Domínguez-Celorrio & Leonard Edens & Sofía Sanz & Manuel Vilas-Varela & Jose Martinez-Castro & Diego Peña & Véronique Langlais & Thomas Frederiksen & José I. Pascual & David Serrate, 2025. "Systematic modulation of charge and spin in graphene nanoribbons on MgO," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    5. Jens Brede & Nestor Merino-Díez & Alejandro Berdonces-Layunta & Sofía Sanz & Amelia Domínguez-Celorrio & Jorge Lobo-Checa & Manuel Vilas-Varela & Diego Peña & Thomas Frederiksen & José I. Pascual & Di, 2023. "Detecting the spin-polarization of edge states in graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Rafal Zuzak & Pawel Dabczynski & Jesús Castro-Esteban & José Ignacio Martínez & Mads Engelund & Dolores Pérez & Diego Peña & Szymon Godlewski, 2025. "Cyclodehydrogenation of molecular nanographene precursors catalyzed by atomic hydrogen," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Qingyang Du & Xuelei Su & Yufeng Liu & Yashi Jiang & Can Li & KaKing Yan & Ricardo Ortiz & Thomas Frederiksen & Shiyong Wang & Ping Yu, 2023. "Orbital-symmetry effects on magnetic exchange in open-shell nanographenes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Deng-Yuan Li & Zheng-Yang Huang & Li-Xia Kang & Bing-Xin Wang & Jian-Hui Fu & Ying Wang & Guang-Yan Xing & Yan Zhao & Xin-Yu Zhang & Pei-Nian Liu, 2024. "Room-temperature selective cyclodehydrogenation on Au(111) via radical addition of open-shell resonance structures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Austin J. Way & Robert M. Jacobberger & Nathan P. Guisinger & Vivek Saraswat & Xiaoqi Zheng & Anjali Suresh & Jonathan H. Dwyer & Padma Gopalan & Michael S. Arnold, 2022. "Graphene nanoribbons initiated from molecularly derived seeds," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    14. C.-W. Chuang & T. Kawakami & K. Sugawara & K. Nakayama & S. Souma & M. Kitamura & K. Amemiya & K. Horiba & H. Kumigashira & G. Kremer & Y. Fagot-Revurat & D. Malterre & C. Bigi & F. Bertran & F. H. Ch, 2025. "Spin-valley coupling enhanced high-TC ferromagnetism in a non-van der Waals monolayer Cr2Se3 on graphene," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    15. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    16. Biao Qin & Muhammad Zeeshan Saeed & Qiuqiu Li & Manli Zhu & Ya Feng & Ziqi Zhou & Jingzhi Fang & Mongur Hossain & Zucheng Zhang & Yucheng Zhou & Ying Huangfu & Rong Song & Jingmei Tang & Bailing Li & , 2023. "General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Yu Wang & Xinlei Zhao & Li Yao & Huiru Liu & Peng Cheng & Yiqi Zhang & Baojie Feng & Fengjie Ma & Jin Zhao & Jiatao Sun & Kehui Wu & Lan Chen, 2024. "Orientation-selective spin-polarized edge states in monolayer NiI2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Yue Niu & Lei Li & Zhiying Qi & Hein Htet Aung & Xinyi Han & Reshef Tenne & Yugui Yao & Alla Zak & Yao Guo, 2023. "0D van der Waals interfacial ferroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Dongfei Wang & De-Liang Bao & Qi Zheng & Chang-Tian Wang & Shiyong Wang & Peng Fan & Shantanu Mishra & Lei Tao & Yao Xiao & Li Huang & Xinliang Feng & Klaus Müllen & Yu-Yang Zhang & Roman Fasel & Pasc, 2023. "Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60916-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.