IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26656-3.html
   My bibliography  Save this article

Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons

Author

Listed:
  • S. E. Ammerman

    (Department of Physics and Astronomy, Michigan State University)

  • V. Jelic

    (Department of Physics and Astronomy, Michigan State University)

  • Y. Wei

    (Department of Physics and Astronomy, Michigan State University)

  • V. N. Breslin

    (Department of Physics and Astronomy, Michigan State University)

  • M. Hassan

    (Department of Physics and Astronomy, Michigan State University)

  • N. Everett

    (Department of Physics and Astronomy, Michigan State University)

  • S. Lee

    (Department of Physics and Astronomy, Michigan State University)

  • Q. Sun

    (Empa, Swiss Federal Laboratories for Materials Science and Technology
    Materials Genome Institute, Shanghai University)

  • C. A. Pignedoli

    (Empa, Swiss Federal Laboratories for Materials Science and Technology)

  • P. Ruffieux

    (Empa, Swiss Federal Laboratories for Materials Science and Technology)

  • R. Fasel

    (Empa, Swiss Federal Laboratories for Materials Science and Technology
    Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern)

  • T. L. Cocker

    (Department of Physics and Astronomy, Michigan State University)

Abstract

Atomically precise electronics operating at optical frequencies require tools that can characterize them on their intrinsic length and time scales to guide device design. Lightwave-driven scanning tunnelling microscopy is a promising technique towards this purpose. It achieves simultaneous sub-ångström and sub-picosecond spatio-temporal resolution through ultrafast coherent control by single-cycle field transients that are coupled to the scanning probe tip from free space. Here, we utilize lightwave-driven terahertz scanning tunnelling microscopy and spectroscopy to investigate atomically precise seven-atom-wide armchair graphene nanoribbons on a gold surface at ultralow tip heights, unveiling highly localized wavefunctions that are inaccessible by conventional scanning tunnelling microscopy. Tomographic imaging of their electron densities reveals vertical decays that depend sensitively on wavefunction and lateral position. Lightwave-driven scanning tunnelling spectroscopy on the ångström scale paves the way for ultrafast measurements of wavefunction dynamics in atomically precise nanostructures and future optoelectronic devices based on locally tailored electronic properties.

Suggested Citation

  • S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26656-3
    DOI: 10.1038/s41467-021-26656-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26656-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26656-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S.W. Schmucker & N. Kumar & J.R. Abelson & S.R. Daly & G.S. Girolami & M.R. Bischof & D.L. Jaeger & R.F. Reidy & B.P. Gorman & J. Alexander & J.B. Ballard & J.N. Randall & J.W. Lyding, 2012. "Field-directed sputter sharpening for tailored probe materials and atomic-scale lithography," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    2. Richard Denk & Michael Hohage & Peter Zeppenfeld & Jinming Cai & Carlo A. Pignedoli & Hajo Söde & Roman Fasel & Xinliang Feng & Klaus Müllen & Shudong Wang & Deborah Prezzi & Andrea Ferretti & Alice R, 2014. "Exciton-dominated optical response of ultra-narrow graphene nanoribbons," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    3. Daniel J. Rizzo & Gregory Veber & Ting Cao & Christopher Bronner & Ting Chen & Fangzhou Zhao & Henry Rodriguez & Steven G. Louie & Michael F. Crommie & Felix R. Fischer, 2018. "Topological band engineering of graphene nanoribbons," Nature, Nature, vol. 560(7717), pages 204-208, August.
    4. R. Zhang & Y. Zhang & Z. C. Dong & S. Jiang & C. Zhang & L. G. Chen & L. Zhang & Y. Liao & J. Aizpurua & Y. Luo & J. L. Yang & J. G. Hou, 2013. "Chemical mapping of a single molecule by plasmon-enhanced Raman scattering," Nature, Nature, vol. 498(7452), pages 82-86, June.
    5. Joonhee Lee & Kevin T. Crampton & Nicholas Tallarida & V. Ara Apkarian, 2019. "Visualizing vibrational normal modes of a single molecule with atomically confined light," Nature, Nature, vol. 568(7750), pages 78-82, April.
    6. Giancarlo Soavi & Stefano Dal Conte & Cristian Manzoni & Daniele Viola & Akimitsu Narita & Yunbin Hu & Xinliang Feng & Ulrich Hohenester & Elisa Molinari & Deborah Prezzi & Klaus Müllen & Giulio Cerul, 2016. "Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    7. Jinming Cai & Pascal Ruffieux & Rached Jaafar & Marco Bieri & Thomas Braun & Stephan Blankenburg & Matthias Muoth & Ari P. Seitsonen & Moussa Saleh & Xinliang Feng & Klaus Müllen & Roman Fasel, 2010. "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, Nature, vol. 466(7305), pages 470-473, July.
    8. Shiyong Wang & Leopold Talirz & Carlo A. Pignedoli & Xinliang Feng & Klaus Müllen & Roman Fasel & Pascal Ruffieux, 2016. "Giant edge state splitting at atomically precise graphene zigzag edges," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
    9. Tyler L. Cocker & Dominik Peller & Ping Yu & Jascha Repp & Rupert Huber, 2016. "Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging," Nature, Nature, vol. 539(7628), pages 263-267, November.
    10. Dominik Peller & Lukas Z. Kastner & Thomas Buchner & Carmen Roelcke & Florian Albrecht & Nikolaj Moll & Rupert Huber & Jascha Repp, 2020. "Sub-cycle atomic-scale forces coherently control a single-molecule switch," Nature, Nature, vol. 585(7823), pages 58-62, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexa Herter & Amirhassan Shams-Ansari & Francesca Fabiana Settembrini & Hana K. Warner & Jérôme Faist & Marko Lončar & Ileana-Cristina Benea-Chelmus, 2023. "Terahertz waveform synthesis in integrated thin-film lithium niobate platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Ignacio Piquero-Zulaica & Eduardo Corral-Rascón & Xabier Diaz de Cerio & Alexander Riss & Biao Yang & Aran Garcia-Lekue & Mohammad A. Kher-Elden & Zakaria M. Abd El-Fattah & Shunpei Nobusue & Takahiro, 2024. "Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiří Doležal & Sofia Canola & Prokop Hapala & Rodrigo Cezar Campos Ferreira & Pablo Merino & Martin Švec, 2022. "Evidence of exciton-libron coupling in chirally adsorbed single molecules," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Jack Griffiths & Tamás Földes & Bart Nijs & Rohit Chikkaraddy & Demelza Wright & William M. Deacon & Dénes Berta & Charlie Readman & David-Benjamin Grys & Edina Rosta & Jeremy J. Baumberg, 2021. "Resolving sub-angstrom ambient motion through reconstruction from vibrational spectra," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Linfei Li & Jeremy F. Schultz & Sayantan Mahapatra & Zhongyi Lu & Xu Zhang & Nan Jiang, 2022. "Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Ignacio Piquero-Zulaica & Eduardo Corral-Rascón & Xabier Diaz de Cerio & Alexander Riss & Biao Yang & Aran Garcia-Lekue & Mohammad A. Kher-Elden & Zakaria M. Abd El-Fattah & Shunpei Nobusue & Takahiro, 2024. "Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Hao He & Maofeng Cao & Yun Gao & Peng Zheng & Sen Yan & Jin-Hui Zhong & Lei Wang & Dayong Jin & Bin Ren, 2024. "Noise learning of instruments for high-contrast, high-resolution and fast hyperspectral microscopy and nanoscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Jun Nishida & Samuel C. Johnson & Peter T. S. Chang & Dylan M. Wharton & Sven A. Dönges & Omar Khatib & Markus B. Raschke, 2022. "Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Xiang-Dong Chen & En-Hui Wang & Long-Kun Shan & Ce Feng & Yu Zheng & Yang Dong & Guang-Can Guo & Fang-Wen Sun, 2021. "Focusing the electromagnetic field to 10−6λ for ultra-high enhancement of field-matter interaction," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    10. Austin J. Way & Robert M. Jacobberger & Nathan P. Guisinger & Vivek Saraswat & Xiaoqi Zheng & Anjali Suresh & Jonathan H. Dwyer & Padma Gopalan & Michael S. Arnold, 2022. "Graphene nanoribbons initiated from molecularly derived seeds," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    12. Yang Luo & Frank Neubrech & Alberto Martin-Jimenez & Na Liu & Klaus Kern & Manish Garg, 2024. "Real-time tracking of coherent oscillations of electrons in a nanodevice by photo-assisted tunnelling," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    14. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Dongfei Wang & De-Liang Bao & Qi Zheng & Chang-Tian Wang & Shiyong Wang & Peng Fan & Shantanu Mishra & Lei Tao & Yao Xiao & Li Huang & Xinliang Feng & Klaus Müllen & Yu-Yang Zhang & Roman Fasel & Pasc, 2023. "Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Zilin Ruan & Baijin Li & Jianchen Lu & Lei Gao & Shijie Sun & Yong Zhang & Jinming Cai, 2023. "Real-space imaging of a phenyl group migration reaction on metal surfaces," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    17. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Ondrej Dyck & Jawaher Almutlaq & David Lingerfelt & Jacob L. Swett & Mark P. Oxley & Bevin Huang & Andrew R. Lupini & Dirk Englund & Stephen Jesse, 2023. "Direct imaging of electron density with a scanning transmission electron microscope," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Jens Brede & Nestor Merino-Díez & Alejandro Berdonces-Layunta & Sofía Sanz & Amelia Domínguez-Celorrio & Jorge Lobo-Checa & Manuel Vilas-Varela & Diego Peña & Thomas Frederiksen & José I. Pascual & Di, 2023. "Detecting the spin-polarization of edge states in graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Fouad N. Ajeel & Ali Ben Ahmed, 2023. "Influence of the boron doping and Stone–Wales defects on the thermoelectric performance of graphene nanoribbons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(10), pages 1-10, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26656-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.