IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46279-8.html
   My bibliography  Save this article

Prediction of highly stable 2D carbon allotropes based on azulenoid kekulene

Author

Listed:
  • Zhenzhe Zhang

    (McGill University)

  • Hanh D. M. Pham

    (McGill University)

  • Dmytro F. Perepichka

    (McGill University)

  • Rustam Z. Khaliullin

    (McGill University)

Abstract

Despite enormous interest in two-dimensional (2D) carbon allotropes, discovering stable 2D carbon structures with practically useful electronic properties presents a significant challenge. Computational modeling in this work shows that fusing azulene-derived macrocycles – azulenoid kekulenes (AK) – into graphene leads to the most stable 2D carbon allotropes reported to date, excluding graphene. Density functional theory predicts that placing the AK units in appropriate relative positions in the graphene lattice opens the 0.54 eV electronic bandgap and leads to the appearance of the remarkable 0.80 eV secondary gap between conduction bands – a feature that is rare in 2D carbon allotropes but is known to enhance light absorption and emission in 3D semiconductors. Among porous AK structures, one material stands out as a stable narrow-multigap (0.36 and 0.56 eV) semiconductor with light charge carriers (me = 0.17 m0, mh = 0.19 m0), whereas its boron nitride analog is a wide-multigap (1.51 and 0.82 eV) semiconductor with light carriers (me = 0.39 m0, mh = 0.32 m0). The multigap engineering strategy proposed here can be applied to other carbon nanostructures creating novel 2D materials for electronic and optoelectronic applications.

Suggested Citation

  • Zhenzhe Zhang & Hanh D. M. Pham & Dmytro F. Perepichka & Rustam Z. Khaliullin, 2024. "Prediction of highly stable 2D carbon allotropes based on azulenoid kekulene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46279-8
    DOI: 10.1038/s41467-024-46279-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46279-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46279-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinming Cai & Pascal Ruffieux & Rached Jaafar & Marco Bieri & Thomas Braun & Stephan Blankenburg & Matthias Muoth & Ari P. Seitsonen & Moussa Saleh & Xinliang Feng & Klaus Müllen & Roman Fasel, 2010. "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, Nature, vol. 466(7305), pages 470-473, July.
    2. Chee-Tat Toh & Hongji Zhang & Junhao Lin & Alexander S. Mayorov & Yun-Peng Wang & Carlo M. Orofeo & Darim Badur Ferry & Henrik Andersen & Nurbek Kakenov & Zenglong Guo & Irfan Haider Abidi & Hunter Si, 2020. "Synthesis and properties of free-standing monolayer amorphous carbon," Nature, Nature, vol. 577(7789), pages 199-203, January.
    3. Alex W. Robertson & Christopher S. Allen & Yimin A. Wu & Kuang He & Jaco Olivier & Jan Neethling & Angus I. Kirkland & Jamie H. Warner, 2012. "Spatial control of defect creation in graphene at the nanoscale," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiran Ding & Mengqi Zeng & Qijing Zheng & Jiaqian Zhang & Ding Xu & Weiyin Chen & Chenyang Wang & Shulin Chen & Yingying Xie & Yu Ding & Shuting Zheng & Jin Zhao & Peng Gao & Lei Fu, 2021. "Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Austin J. Way & Robert M. Jacobberger & Nathan P. Guisinger & Vivek Saraswat & Xiaoqi Zheng & Anjali Suresh & Jonathan H. Dwyer & Padma Gopalan & Michael S. Arnold, 2022. "Graphene nanoribbons initiated from molecularly derived seeds," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Baokun Liang & Yingying Zhang & Christopher Leist & Zhaowei Ou & Miroslav Položij & Zhiyong Wang & David Mücke & Renhao Dong & Zhikun Zheng & Thomas Heine & Xinliang Feng & Ute Kaiser & Haoyuan Qi, 2022. "Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    6. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    7. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Zilin Ruan & Baijin Li & Jianchen Lu & Lei Gao & Shijie Sun & Yong Zhang & Jinming Cai, 2023. "Real-space imaging of a phenyl group migration reaction on metal surfaces," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    9. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Fouad N. Ajeel & Ali Ben Ahmed, 2023. "Influence of the boron doping and Stone–Wales defects on the thermoelectric performance of graphene nanoribbons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(10), pages 1-10, October.
    11. Ignacio Piquero-Zulaica & Eduardo Corral-Rascón & Xabier Diaz de Cerio & Alexander Riss & Biao Yang & Aran Garcia-Lekue & Mohammad A. Kher-Elden & Zakaria M. Abd El-Fattah & Shunpei Nobusue & Takahiro, 2024. "Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Talal Yusaf & Abu Shadate Faisal Mahamude & Kaniz Farhana & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Mohd Kamal Kamarulzaman & Sivarao Subramonian & Steve Hall & Hayder Abed Dh, 2022. "A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications," Sustainability, MDPI, vol. 14(19), pages 1-32, September.
    13. P. Z. Sun & M. Yagmurcukardes & R. Zhang & W. J. Kuang & M. Lozada-Hidalgo & B. L. Liu & H.-M. Cheng & F. C. Wang & F. M. Peeters & I. V. Grigorieva & A. K. Geim, 2021. "Exponentially selective molecular sieving through angstrom pores," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    14. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Junbo Wang & Kaifeng Niu & Huaming Zhu & Chaojie Xu & Chuan Deng & Wenchao Zhao & Peipei Huang & Haiping Lin & Dengyuan Li & Johanna Rosen & Peinian Liu & Francesco Allegretti & Johannes V. Barth & Bi, 2024. "Universal inter-molecular radical transfer reactions on metal surfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Nan Cao & Biao Yang & Alexander Riss & Johanna Rosen & Jonas Björk & Johannes V. Barth, 2023. "On-surface synthesis of enetriynes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Jinyi Wang & Yihan Zhu & Guilin Zhuang & Yayu Wu & Shengda Wang & Pingsen Huang & Guan Sheng & Muqing Chen & Shangfeng Yang & Thomas Greber & Pingwu Du, 2022. "Synthesis of a magnetic π-extended carbon nanosolenoid with Riemann surfaces," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46279-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.