IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12336-d928256.html
   My bibliography  Save this article

A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications

Author

Listed:
  • Talal Yusaf

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia
    Department of Research, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia)

  • Abu Shadate Faisal Mahamude

    (Department of Mechanical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia)

  • Kaniz Farhana

    (Department of Apparel Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh)

  • Wan Sharuzi Wan Harun

    (Department of Mechanical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia)

  • Kumaran Kadirgama

    (Automotive Engineering Centre, Universiti Malaysia Pahang, Pekan 26600, Pahang, Malaysia
    Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Pahang, Malaysia)

  • Devarajan Ramasamy

    (Department of Mechanical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia)

  • Mohd Kamal Kamarulzaman

    (Automotive Engineering Centre, Universiti Malaysia Pahang, Pekan 26600, Pahang, Malaysia)

  • Sivarao Subramonian

    (Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76100 Melaka, Melaka, Malaysia)

  • Steve Hall

    (School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia)

  • Hayder Abed Dhahad

    (Mechanical Engineering Department, University of Technology-Iraq, Baghdad 10066, Iraq)

Abstract

Graphene, with its amazing prospects and nonpareil aspects, has enticed scientists and researchers all over the globe in a significant fashion. Graphene, the super material, endlessly demonstrates some of the substantial, as well as desired, mechanical, thermal, optical, and chemical characteristics which are just about to bring about an unprecedented transformation in the science and technology field. Being derived from graphite, graphene is made of one-atom-thick, two-dimensional carbon atoms arranged in a honeycomb lattice. This Nobel-prize-winning phenomenon includes properties that may result in a new dawn of technology. Graphene, the European Union’s (EU) largest pledged project, has been extensively researched since its discovery. Several stable procedures have been developed to produce graphene nanoparticles in laboratories worldwide. Consequently, miscellaneous applications and futuristic approaches in artificial intelligence (AI)-based technology, biomedical and nanomedicine, defence and tactics, desalination, and sports are ruling over the next generation’s fast-paced world and are making the existing market competitive and transformative. This review sheds light upon the ideology of the preparation and versatile application of graphene and foretells the upcoming advancements of graphene nanoparticles with the challenges rearing ahead. The study also considers graphene nanoparticles’ diverse fields and portends their sustainability with the possibility of their acceptance in the commercial market as well as in common usage.

Suggested Citation

  • Talal Yusaf & Abu Shadate Faisal Mahamude & Kaniz Farhana & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Mohd Kamal Kamarulzaman & Sivarao Subramonian & Steve Hall & Hayder Abed Dh, 2022. "A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications," Sustainability, MDPI, vol. 14(19), pages 1-32, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12336-:d:928256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12336/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12336/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1, March.
    2. Yuanbo Zhang & Yan-Wen Tan & Horst L. Stormer & Philip Kim, 2005. "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature, Nature, vol. 438(7065), pages 201-204, November.
    3. Jinming Cai & Pascal Ruffieux & Rached Jaafar & Marco Bieri & Thomas Braun & Stephan Blankenburg & Matthias Muoth & Ari P. Seitsonen & Moussa Saleh & Xinliang Feng & Klaus Müllen & Roman Fasel, 2010. "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, Nature, vol. 466(7305), pages 470-473, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    2. Yoonseok Hwang & Jun-Won Rhim & Bohm-Jung Yang, 2021. "Geometric characterization of anomalous Landau levels of isolated flat bands," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Austin J. Way & Robert M. Jacobberger & Nathan P. Guisinger & Vivek Saraswat & Xiaoqi Zheng & Anjali Suresh & Jonathan H. Dwyer & Padma Gopalan & Michael S. Arnold, 2022. "Graphene nanoribbons initiated from molecularly derived seeds," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    5. Daiyu Geng & Hui Zhou & Shaosheng Yue & Zhenyu Sun & Peng Cheng & Lan Chen & Sheng Meng & Kehui Wu & Baojie Feng, 2022. "Observation of gapped Dirac cones in a two-dimensional Su-Schrieffer-Heeger lattice," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    6. M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    7. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Fouad N. Ajeel & Ali Ben Ahmed, 2023. "Influence of the boron doping and Stone–Wales defects on the thermoelectric performance of graphene nanoribbons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(10), pages 1-10, October.
    9. Timon Rabczuk & Mohammad Reza Azadi Kakavand & Raahul Palanivel Uma & Ali Hossein Nezhad Shirazi & Meysam Makaremi, 2018. "Thermal Conductance along Hexagonal Boron Nitride and Graphene Grain Boundaries," Energies, MDPI, vol. 11(6), pages 1-14, June.
    10. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    11. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Ignacio Piquero-Zulaica & Eduardo Corral-Rascón & Xabier Diaz de Cerio & Alexander Riss & Biao Yang & Aran Garcia-Lekue & Mohammad A. Kher-Elden & Zakaria M. Abd El-Fattah & Shunpei Nobusue & Takahiro, 2024. "Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Talia Tene & Nataly Bonilla García & Miguel Ángel Sáez Paguay & John Vera & Marco Guevara & Cristian Vacacela Gomez & Stefano Bellucci, 2024. "Dataset for Electronics and Plasmonics in Graphene, Silicene, and Germanene Nanostrips," Data, MDPI, vol. 9(2), pages 1-18, January.
    14. Zhenzhe Zhang & Hanh D. M. Pham & Dmytro F. Perepichka & Rustam Z. Khaliullin, 2024. "Prediction of highly stable 2D carbon allotropes based on azulenoid kekulene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. S. E. Ammerman & V. Jelic & Y. Wei & V. N. Breslin & M. Hassan & N. Everett & S. Lee & Q. Sun & C. A. Pignedoli & P. Ruffieux & R. Fasel & T. L. Cocker, 2021. "Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    16. Lijun Zhu & Xiaoqiang Liu & Lin Li & Xinyi Wan & Ran Tao & Zhongniu Xie & Ji Feng & Changgan Zeng, 2023. "Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Zilin Ruan & Baijin Li & Jianchen Lu & Lei Gao & Shijie Sun & Yong Zhang & Jinming Cai, 2023. "Real-space imaging of a phenyl group migration reaction on metal surfaces," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    18. Yang Luo & Alberto Martin-Jimenez & Michele Pisarra & Fernando Martin & Manish Garg & Klaus Kern, 2023. "Imaging and controlling coherent phonon wave packets in single graphene nanoribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Junbo Wang & Kaifeng Niu & Huaming Zhu & Chaojie Xu & Chuan Deng & Wenchao Zhao & Peipei Huang & Haiping Lin & Dengyuan Li & Johanna Rosen & Peinian Liu & Francesco Allegretti & Johannes V. Barth & Bi, 2024. "Universal inter-molecular radical transfer reactions on metal surfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Nan Cao & Biao Yang & Alexander Riss & Johanna Rosen & Jonas Björk & Johannes V. Barth, 2023. "On-surface synthesis of enetriynes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12336-:d:928256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.