IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v45y2025i3d10.1007_s10669-025-10044-z.html
   My bibliography  Save this article

Decomposition analysis of energy-related CO2 emissions: an empirical study for selected EU economies

Author

Listed:
  • Emmanouil Hatzigeorgiou

    (Panteion University)

  • Eleni Koilakou

    (Panteion University)

Abstract

This study conducts a decomposition analysis of energy-related CO2 emissions across selected European countries from 2000 to 2018. Employing the Logarithmic Mean Divisia Index technique, the analysis disaggregates changes in CO2 emissions into five key drivers: the income effect, the energy intensity effect, the energy mix (structure) effect, the emission factor effect, and the population effect. The findings highlight the dominant influence of the income effect, with contributions ranging from + 12% in France to + 55% in the Czech Republic. In contrast, energy intensity improvements present a major impact on emissions reductions, especially in Sweden (− 40%) and the Czech Republic (− 35%), reflecting gains in energy efficiency. The energy structure effect had a negative contribution (e.g., − 13% in Denmark), while population effects were mainly modest and positive. The results underscore the necessity for tailored policy approaches across EU regions, with a strong emphasis on reducing energy intensity and fostering low-carbon economic growth. Conclusions and directions for future research—particularly toward extending the time series beyond 2018—are discussed.

Suggested Citation

  • Emmanouil Hatzigeorgiou & Eleni Koilakou, 2025. "Decomposition analysis of energy-related CO2 emissions: an empirical study for selected EU economies," Environment Systems and Decisions, Springer, vol. 45(3), pages 1-12, September.
  • Handle: RePEc:spr:envsyd:v:45:y:2025:i:3:d:10.1007_s10669-025-10044-z
    DOI: 10.1007/s10669-025-10044-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-025-10044-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-025-10044-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kalimeris, Panos & Bithas, Kostas & Richardson, Clive & Nijkamp, Peter, 2020. "Hidden linkages between resources and economy: A “Beyond-GDP” approach using alternative welfare indicators," Ecological Economics, Elsevier, vol. 169(C).
    2. Driha, Oana & Cascetta, Furio & Nardini, Sergio & Bianco, Vincenzo, 2023. "Evolution of renewable energy generation in EU27. A decomposition analysis," Renewable Energy, Elsevier, vol. 207(C), pages 348-358.
    3. Bithas, K. & Kalimeris, P., 2013. "Re-estimating the decoupling effect: Is there an actual transition towards a less energy-intensive economy?," Energy, Elsevier, vol. 51(C), pages 78-84.
    4. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    5. Yingxin Zhang & Sainan Wang & Wei Shao & Junhong Hao, 2021. "Feasible Distributed Energy Supply Options for Household Energy Use in China from a Carbon Neutral Perspective," IJERPH, MDPI, vol. 18(24), pages 1-16, December.
    6. Ang, James B., 2007. "CO2 emissions, energy consumption, and output in France," Energy Policy, Elsevier, vol. 35(10), pages 4772-4778, October.
    7. Lee, Chien-Chiang & Zhao, Ya-Nan, 2023. "Heterogeneity analysis of factors influencing CO2 emissions: The role of human capital, urbanization, and FDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Irfan Khan & Fujun Hou, 2021. "The Impact of Socio-economic and Environmental Sustainability on CO2 Emissions: A Novel Framework for Thirty IEA Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(3), pages 1045-1076, June.
    9. I. Jianu & S. M. Jeloaica & M. D. Tudorache, 2022. "Greenhouse Gas Emissions and its Main Drivers: a Panel Assessment for EU-27 Member States," Papers 2205.00295, arXiv.org.
    10. Malte Meinshausen & Jared Lewis & Christophe McGlade & Johannes Gütschow & Zebedee Nicholls & Rebecca Burdon & Laura Cozzi & Bernd Hackmann, 2022. "Realization of Paris Agreement pledges may limit warming just below 2 °C," Nature, Nature, vol. 604(7905), pages 304-309, April.
    11. Veronika Slakaityte & Izabela Surwillo & Trine Villumsen Berling, 2023. "A new cooperation agenda for European energy security," Nature Energy, Nature, vol. 8(10), pages 1051-1053, October.
    12. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    13. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    14. Saša Obradović & Nemanja Lojanica, 2017. "Energy use, CO2 emissions and economic growth – causality on a sample of SEE countries," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 30(1), pages 511-526, January.
    15. Su, Bin & Ang, B.W., 2023. "Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data," Energy Economics, Elsevier, vol. 126(C).
    16. Chen, Jiandong & Wang, Ping & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2018. "Decomposition and decoupling analysis of CO2 emissions in OECD," Applied Energy, Elsevier, vol. 231(C), pages 937-950.
    17. Xu, X.Y. & Ang, B.W., 2014. "Analysing residential energy consumption using index decomposition analysis," Applied Energy, Elsevier, vol. 113(C), pages 342-351.
    18. Ratnakar Pani & Ujjaini Mukhopadhyay, 2010. "Identifying the major players behind increasing global carbon dioxide emissions: a decomposition analysis," Environment Systems and Decisions, Springer, vol. 30(2), pages 183-205, June.
    19. Claudien Habimana Simbi & Fengmei Yao & Jiahua Zhang, 2025. "Sustainable Development in Africa: A Comprehensive Analysis of GDP, CO 2 Emissions, and Socio-Economic Factors," Sustainability, MDPI, vol. 17(2), pages 1-22, January.
    20. Israa Al Khaffaf & Adil Tamimi & Vian Ahmed, 2024. "Pathways to Carbon Neutrality: A Review of Strategies and Technologies Across Sectors," Energies, MDPI, vol. 17(23), pages 1-38, December.
    21. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    22. Manzoor Ahmad & Shoukat Iqbal Khattak, 2020. "Is Aggregate Domestic Consumption Spending (ADCS) Per Capita Determining CO2 Emissions in South Africa? A New Perspective," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(3), pages 529-552, March.
    23. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    24. Mirza, Faisal Mehmood & Sinha, Avik & Khan, Javeria Rehman & Kalugina, Olga A. & Zafar, Muhammad Wasif, 2022. "Impact of Energy Efficiency on CO2 Emissions: Empirical Evidence from Developing Countries," MPRA Paper 111923, University Library of Munich, Germany, revised 2022.
    25. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    26. Andreoni, Valeria & Galmarini, Stefano, 2016. "Drivers in CO2 emissions variation: A decomposition analysis for 33 world countries," Energy, Elsevier, vol. 103(C), pages 27-37.
    27. Román-Collado, Rocío & Economidou, Marina, 2021. "The role of energy efficiency in assessing the progress towards the EU energy efficiency targets of 2020: Evidence from the European productive sectors," Energy Policy, Elsevier, vol. 156(C).
    28. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
    29. Muntasir Murshed & Uzma Khan & Aarif Mohammad Khan & Ilhan Ozturk, 2023. "Can energy productivity gains harness the carbon dioxide‐inhibiting agenda of the Next 11 countries? Implications for achieving sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 307-320, February.
    30. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    31. Zuyi Wang & Man-Keun Kim, 2024. "Decoupling of CO2 emissions and income in the U.S.: A new look from EKC," Climatic Change, Springer, vol. 177(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    2. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    3. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    4. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    5. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    6. Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
    7. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    8. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
    9. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    10. Wen Guo & Tao Sun & Hongjun Dai, 2016. "Effect of Population Structure Change on Carbon Emission in China," Sustainability, MDPI, vol. 8(3), pages 1-20, March.
    11. Lin, Gang & Jiang, Dong & Fu, Jingying & Wang, Di & Li, Xiang, 2019. "A spatial shift-share decomposition of energy consumption changes in China," Energy Policy, Elsevier, vol. 135(C).
    12. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    13. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    14. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    15. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    16. Wankeun Oh & Jonghyun Yoo, 2020. "Long-Term Increases and Recent Slowdowns of CO 2 Emissions in Korea," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    17. Gobong Choi & Taeyoon Kim & Minchul Kim, 2021. "LMDI Decomposition Analysis of E-Waste Generation in the ASEAN," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    18. Bingquan Liu & Yue Wang & Xuran Chang & Boyang Nie & Lingqi Meng & Yongqing Li, 2022. "Does Land Urbanization Affect the Catch-Up Effect of Carbon Emissions Reduction in China’s Logistics?," Land, MDPI, vol. 11(9), pages 1-18, September.
    19. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
    20. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:45:y:2025:i:3:d:10.1007_s10669-025-10044-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.