IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v37y2017i2d10.1007_s10669-017-9644-7.html
   My bibliography  Save this article

Trends and applications of multi-criteria decision analysis: use in government agencies

Author

Listed:
  • Margaret H. Kurth

    (US Army Corps of Engineers)

  • Sabrina Larkin

    (US Army Corps of Engineers)

  • Jeffrey M. Keisler

    (University of Massachusetts Boston)

  • Igor Linkov

    (US Army Corps of Engineers)

Abstract

Government agencies are responsible for making complex, high-stake decisions, which require them to balance political, technical, and economic considerations. Pressure from stakeholders and administrative requirements necessitate a traceable and transparent method for decision making. Multi-criteria decision analysis (MCDA) methods are available to decision makers to facilitate systematic treatment of the information and factors necessary to make informed and effective decisions in complex circumstances. A survey of gray and academic literature was conducted to gauge the level of application and awareness of MCDA methods by US government agencies and determine if the tools’ benefits are being realized. Results show an increase in awareness and consideration of MCDA from 2000 to the present, and that agencies are especially considering and using tools to engage with stakeholders. Government agencies would benefit from extending the application of MCDA to strategic planning and congressional engagement, as well as by standardizing MCDA use to better enable inter-agency collaboration and communication.

Suggested Citation

  • Margaret H. Kurth & Sabrina Larkin & Jeffrey M. Keisler & Igor Linkov, 2017. "Trends and applications of multi-criteria decision analysis: use in government agencies," Environment Systems and Decisions, Springer, vol. 37(2), pages 134-143, June.
  • Handle: RePEc:spr:envsyd:v:37:y:2017:i:2:d:10.1007_s10669-017-9644-7
    DOI: 10.1007/s10669-017-9644-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-017-9644-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-017-9644-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James S. Dyer, 1990. "Remarks on the Analytic Hierarchy Process," Management Science, INFORMS, vol. 36(3), pages 249-258, March.
    2. Gamper, C.D. & Turcanu, C., 2007. "On the governmental use of multi-criteria analysis," Ecological Economics, Elsevier, vol. 62(2), pages 298-307, April.
    3. Browne, David & O'Regan, Bernadette & Moles, Richard, 2010. "Use of multi-criteria decision analysis to explore alternative domestic energy and electricity policy scenarios in an Irish city-region," Energy, Elsevier, vol. 35(2), pages 518-528.
    4. Thomas C. Beierle, 2002. "The Quality of Stakeholder‐Based Decisions," Risk Analysis, John Wiley & Sons, vol. 22(4), pages 739-749, August.
    5. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834.
    6. James S. Dyer, 1990. "A Clarification of "Remarks on the Analytic Hierarchy Process"," Management Science, INFORMS, vol. 36(3), pages 274-275, March.
    7. Montibeller, Gilberto & Franco, L. Alberto & Lord, Ewan & Iglesias, Aline, 2009. "Structuring resource allocation decisions: A framework for building multi-criteria portfolio models with area-grouped options," European Journal of Operational Research, Elsevier, vol. 199(3), pages 846-856, December.
    8. Suzana Braga Rodrigues & David J. Hickson, 1995. "Success In Decision Making: Different Organizations, Differing Reasons For Success," Journal of Management Studies, Wiley Blackwell, vol. 32(5), pages 655-678, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Cantelmi & G. Di Gravio & R. Patriarca, 2021. "Reviewing qualitative research approaches in the context of critical infrastructure resilience," Environment Systems and Decisions, Springer, vol. 41(3), pages 341-376, September.
    2. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    3. Jeffrey M. Keisler & Christy M. Foran & Maija M. Kuklja & Igor Linkov, 2017. "Undue concentration of research and education: multi-criteria decision approach to assess jurisdiction eligibility for NSF funding," Environment Systems and Decisions, Springer, vol. 37(3), pages 367-378, September.
    4. Amir Noori & Hossein Bonakdari & Khosro Morovati & Bahram Gharabaghi, 2018. "The optimal dam site selection using a group decision-making method through fuzzy TOPSIS model," Environment Systems and Decisions, Springer, vol. 38(4), pages 471-488, December.
    5. R. Duncan McIntosh & Austin Becker, 2020. "Applying MCDA to weight indicators of seaport vulnerability to climate and extreme weather impacts for U.S. North Atlantic ports," Environment Systems and Decisions, Springer, vol. 40(3), pages 356-370, September.
    6. Judit Lienert & Igor Linkov, 2019. "Editorial featured papers on environmental decisions," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 151-157, November.
    7. Jamile Eleutério Delesposte & Luís Alberto Duncan Rangel & Marcelo Jasmim Meiriño & Ramon Baptista Narcizo & André Armando Mendonça de Alencar Junior, 2021. "Use of multicriteria decision aid methods in the context of sustainable innovations: bibliometrics, applications and trends," Environment Systems and Decisions, Springer, vol. 41(4), pages 501-522, December.
    8. Amaury Caruzzo & Cintia Maria Rodrigues Blanco & Paul Joe, 2020. "Developing a multi-attribute decision aid model for selection of a weather radar supplier," Environment Systems and Decisions, Springer, vol. 40(3), pages 371-384, September.
    9. Anna E. Tovkach & John C. Boyle & Enoch A. Nagelli & Corey M. James & Pamela L. Sheehan & Andrew R. Pfluger, 2023. "Structured decision making for assessment of solid waste-to-energy systems for decentralized onsite applications," Environment Systems and Decisions, Springer, vol. 43(1), pages 54-71, March.
    10. Zachary A. Collier & James H. Lambert & Igor Linkov, 2017. "Preview of the June issue featuring literature reviews of MCDA and articles authored by students," Environment Systems and Decisions, Springer, vol. 37(2), pages 121-122, June.
    11. Souad Ahmed Benromdhane, 2021. "A multi-attribute utility model for environmental decision-making: an application to casting," Environment Systems and Decisions, Springer, vol. 41(1), pages 21-32, March.
    12. Strong, Peter & Shenvi, Aditi & Yu, Xuewen & Papamichail, K. Nadia & Wynn, Henry P. & Smith, Jim Q., 2023. "Building a Bayesian decision support system for evaluating COVID-19 countermeasure strategies," LSE Research Online Documents on Economics 113632, London School of Economics and Political Science, LSE Library.
    13. Francesca Marsili & Jörg Bödefeld, 2021. "Integrating Cluster Analysis into Multi-Criteria Decision Making for Maintenance Management of Aging Culverts," Mathematics, MDPI, vol. 9(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carland, Corinne & Goentzel, Jarrod & Montibeller, Gilberto, 2018. "Modeling the values of private sector agents in multi-echelon humanitarian supply chains," European Journal of Operational Research, Elsevier, vol. 269(2), pages 532-543.
    2. Katie Steele, 2009. "Response," Risk Analysis, John Wiley & Sons, vol. 29(11), pages 1494-1494, November.
    3. Behnam Malakooti, 2015. "Double Helix Value Functions, Ordinal/Cardinal Approach, Additive Utility Functions, Multiple Criteria, Decision Paradigm, Process, and Types (Z Theory I)," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1353-1400, November.
    4. Katie Steele & Yohay Carmel & Jean Cross & Chris Wilcox, 2009. "Uses and Misuses of Multicriteria Decision Analysis (MCDA) in Environmental Decision Making," Risk Analysis, John Wiley & Sons, vol. 29(1), pages 26-33, January.
    5. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    6. Schuwirth, N. & Reichert, P. & Lienert, J., 2012. "Methodological aspects of multi-criteria decision analysis for policy support: A case study on pharmaceutical removal from hospital wastewater," European Journal of Operational Research, Elsevier, vol. 220(2), pages 472-483.
    7. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    8. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    9. Kun Chen & Gang Kou & J. Michael Tarn & Yan Song, 2015. "Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices," Annals of Operations Research, Springer, vol. 235(1), pages 155-175, December.
    10. Suwignjo, P. & Bititci, U. S & Carrie, A. S, 2000. "Quantitative models for performance measurement system," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 231-241, March.
    11. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    12. Huang, Samuel H. & Keskar, Harshal, 2007. "Comprehensive and configurable metrics for supplier selection," International Journal of Production Economics, Elsevier, vol. 105(2), pages 510-523, February.
    13. Hoene, Andreas & Jawale, Mandar & Neukirchen, Thomas & Bednorz, Nicole & Schulz, Holger & Hauser, Simon, 2019. "Bewertung von Technologielösungen für Automatisierung und Ergonomieunterstützung der Intralogistik," ild Schriftenreihe 64, FOM Hochschule für Oekonomie & Management, Institut für Logistik- & Dienstleistungsmanagement (ild).
    14. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    15. Yael Grushka-Cockayne & Bert De Reyck & Zeger Degraeve, 2008. "An Integrated Decision-Making Approach for Improving European Air Traffic Management," Management Science, INFORMS, vol. 54(8), pages 1395-1409, August.
    16. Joaquín Pérez, José L. Jimeno, Ethel Mokotoff, 2001. "Another potential strong shortcoming of AHP," Doctorado en Economía- documentos de trabajo 8/02, Programa de doctorado en Economía. Universidad de Alcalá., revised 01 Jun 2002.
    17. Jain, Bharat A. & Nag, Barin N., 1996. "A decision-support model for investment decisions in new ventures," European Journal of Operational Research, Elsevier, vol. 90(3), pages 473-486, May.
    18. Kevin Kam Fung Yuen, 2022. "Decision models for information systems planning using primitive cognitive network process: comparisons with analytic hierarchy process," Operational Research, Springer, vol. 22(3), pages 1759-1785, July.
    19. K. Madan Shankar & P. Udhaya Kumar & Devika Kannan, 2016. "Analyzing the Drivers of Advanced Sustainable Manufacturing System Using AHP Approach," Sustainability, MDPI, vol. 8(8), pages 1-10, August.
    20. Siraj, Sajid & Mikhailov, Ludmil & Keane, John A., 2015. "Contribution of individual judgments toward inconsistency in pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 242(2), pages 557-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:37:y:2017:i:2:d:10.1007_s10669-017-9644-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.