IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i3d10.1007_s10668-023-04196-8.html
   My bibliography  Save this article

Qualitative–quantitative comparative assessment of conventional gas turbine with fuel cell-based integrated power cycle

Author

Listed:
  • Abhinav Anand Sinha

    (PDPM Indian Institute of Information and Technology Design and Manufacturing)

  • Tushar Choudhary

    (PDPM Indian Institute of Information and Technology Design and Manufacturing)

  • Mohd. Zahid Ansari

    (PDPM Indian Institute of Information and Technology Design and Manufacturing)

  • Anoop Kumar Shukla

    (Amity University, Uttar Pradesh)

Abstract

A conventional gas turbine has potential to generate power but suffers from significant losses in the form of exhaust. The system’s efficiency can be improved by incorporating the recuperator into the cycle, which is known as recuperated gas turbine, but only to a certain extent. Through hybridization, there are more options for improving performance. To do this, a high-temperature fuel cell known as a “solid oxide fuel cell” is combined with the traditional system to create a hybrid that offers significant improvements in both quantitative and qualitative performance. First law of thermodynamics gives the quantitative results, whereas second law of thermodynamics gives a qualitative result. This paper presents the qualitative and quantitative comparison between hybrid and non-hybrid configuration. The parametric analysis for fuel cell is shown by considering Knudsen and molecular diffusion coefficient, along with the detailed discussion of conventional system and hybrid system. Performance of hybrid system is validated with the published results. Through hybridization more than 20% efficiency is improved in recuperated gas turbine when fuel cell is installed with it. The hybrid system achieves efficiency of energy and exergy efficiency of 61.46% and 59.9%, respectively, at pressure ratio 4 and turbine inlet temperature 1250 K. A unique performance map also presented for the proposed configuration and compared the nature of the curve. Graphical abstract

Suggested Citation

  • Abhinav Anand Sinha & Tushar Choudhary & Mohd. Zahid Ansari & Anoop Kumar Shukla, 2025. "Qualitative–quantitative comparative assessment of conventional gas turbine with fuel cell-based integrated power cycle," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 7347-7377, March.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:3:d:10.1007_s10668-023-04196-8
    DOI: 10.1007/s10668-023-04196-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-04196-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-04196-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pourhedayat, Samira & Hu, Eric & Chen, Lei, 2023. "An improved semi-analytical model for evaluating performance of gas turbine power plants," Energy, Elsevier, vol. 267(C).
    2. Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
    3. Wee, Jung-Ho, 2011. "Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources," Applied Energy, Elsevier, vol. 88(12), pages 4252-4263.
    4. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
    5. Ezzat, M.F. & Dincer, I., 2020. "Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems," Energy, Elsevier, vol. 194(C).
    6. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Qinlong & Zhao, Hongbin & Yang, Xiaoyu, 2019. "Economic performance study of the integrated MR-SOFC-CCHP system," Energy, Elsevier, vol. 166(C), pages 236-245.
    2. Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2021. "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives," Energy, Elsevier, vol. 220(C).
    3. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    4. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    6. Gong, Linjuan & Hou, Guolian & Li, Jun & Gao, Haidong & Gao, Lin & Wang, Lin & Gao, Yaokui & Zhou, Junbo & Wang, Mingkun, 2023. "Intelligent fuzzy modeling of heavy-duty gas turbine for smart power generation," Energy, Elsevier, vol. 277(C).
    7. Dong, Weijie & He, Guoqing & Cui, Quansheng & Sun, Wenwen & Hu, Zhenlong & Ahli raad, Erfan, 2022. "Self-scheduling of a novel hybrid GTSOFC unit in day-ahead energy and spinning reserve markets within ancillary services using a novel energy storage," Energy, Elsevier, vol. 239(PE).
    8. Nadir, Mahmoud & Ghenaiet, Adel, 2017. "Steam turbine injection generator performance estimation considering turbine blade cooling," Energy, Elsevier, vol. 132(C), pages 248-256.
    9. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    10. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan & Simonson, Carey James, 2022. "Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture," Energy, Elsevier, vol. 253(C).
    11. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    12. Zhao, Liang & Zhang, Jiulei & Wang, Xiu & Feng, Junsheng & Dong, Hui & Kong, Xiangwei, 2020. "Dynamic exergy analysis of a novel LNG cold energy utilization system combined with cold, heat and power," Energy, Elsevier, vol. 212(C).
    13. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
    14. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    15. Sleiti, Ahmad K. & Al-Ammari, Wahib A. & Musharavati, Farayi, 2024. "Novel integrated system for power, hydrogen, and ammonia production using direct oxy-combustion sCO2 power cycle with automatic CO2 capture, water electrolyzer, and Haber-Bosch process," Energy, Elsevier, vol. 307(C).
    16. Chacartegui, R. & Blanco, M.J. & Muñoz de Escalona, J.M. & Sánchez, D. & Sánchez, T., 2013. "Performance assessment of Molten Carbonate Fuel Cell–Humid Air Turbine hybrid systems," Applied Energy, Elsevier, vol. 102(C), pages 687-699.
    17. Haghighat Mamaghani, Alireza & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2015. "4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 82(C), pages 650-663.
    18. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    19. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    20. Sadeghi, Mohsen & Chitsaz, Ata & Marivani, Parisa & Yari, Mortaza & Mahmoudi, S.M.S., 2020. "Effects of thermophysical and thermochemical recuperation on the performance of combined gas turbine and organic rankine cycle power generation system: Thermoeconomic comparison and multi-objective op," Energy, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:3:d:10.1007_s10668-023-04196-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.