IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225012174.html
   My bibliography  Save this article

Assessment and optimization of a novel combined heat and power system through an energy nexus approach: Enhancing energy storage and sustainability

Author

Listed:
  • Wang, Zhe
  • Liu, Han
  • Jiang, Changhao
  • Ji, Yulong
  • Han, Fenghui

Abstract

Traditional energy systems often suffer from significant energy losses and environmental impacts, highlighting the urgency for advanced technologies that can effectively harness and utilize waste heat while integrating renewable sources. This paper presents a novel hybrid combined heat and power system, termed solid oxide fuel cells (SOFC), supercritical CO2 power cycle (SCO2) and Brayton pumped thermal electricity storage (PTES). The high-temperature exhaust gas is utilized to heat CO2 within the SCO2 power cycle, enabling a secondary energy recovery. To fully capitalize on waste heat and minimize environmental impacts, a Brayton PTES system is integrated, storing residual heat for low-cost power supply during non-operational periods. The exhaust gas from the SOFC enhances the heating of the fuel, maximizing energy utilization and contributing to energy conservation. An innovative energy nexus assessment integrating energy, exergy, exergoeconomic, exergoenvironment, emergoeconomic, and emergoenvironment designed to analyze and optimize the comprehensive performance of the proposed system. The comprehensive optimization results of the system show that when the fuel flow rate is 0.42 mol/s and the steam carbon ratio is 1.5, the energy efficiency is 70.47 % and the effective energy efficiency is 43.89 %. Compared to its initial state, the exergy efficiency and energy efficiency of the system have increased by 2.05 % and 5.1 %, respectively.

Suggested Citation

  • Wang, Zhe & Liu, Han & Jiang, Changhao & Ji, Yulong & Han, Fenghui, 2025. "Assessment and optimization of a novel combined heat and power system through an energy nexus approach: Enhancing energy storage and sustainability," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012174
    DOI: 10.1016/j.energy.2025.135575
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225012174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Yuemao & Ma, Yue & Han, Fenghui & Ji, Yulong & Cai, Wenjian & Wang, Zhe, 2023. "Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO2 cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine," Energy, Elsevier, vol. 265(C).
    2. Sadeghi, Mohsen & Chitsaz, Ata & Mahmoudi, S.M.S. & Rosen, Marc A., 2015. "Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell," Energy, Elsevier, vol. 89(C), pages 191-204.
    3. Aghbashlo, Mortaza & Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Gupta, Vijai Kumar & Amiri, Hamid & Lam, Su Shiung & Morosuk, Tatiana & Tabatabaei, Meisam, 2021. "Exergoenvironmental analysis of bioenergy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Wang, Zhe & Mu, Xichen & Ma, Yuhao & Liao, Pengzhi & Ji, Yulong & Han, Fenghui, 2025. "Advanced energy management and optimal scheduling for integrated offshore gas-hydrogen-electricity-heat systems," Energy, Elsevier, vol. 319(C).
    5. Najjar, Yousef S.H. & Abubaker, Ahmad M., 2017. "Thermoeconomic analysis and optimization of a novel inlet air cooling system with gas turbine engines using cascaded waste-heat recovery," Energy, Elsevier, vol. 128(C), pages 421-434.
    6. Shamsi, Syed Safeer Mehdi & Barberis, Stefano & Maccarini, Simone & Traverso, Alberto, 2024. "Large scale energy storage systems based on carbon dioxide thermal cycles: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Alenezi, A. & Vesely, L. & Kapat, J., 2022. "Exergoeconomic analysis of hybrid sCO2 Brayton power cycle," Energy, Elsevier, vol. 247(C).
    8. Kim, Young Min & Sohn, Jeong Lak & Yoon, Eui Soo, 2017. "Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine," Energy, Elsevier, vol. 118(C), pages 893-905.
    9. Cao, Menglong & Wang, Zhe & Tang, Haobo & Li, Songran & Ji, Yulong & Han, Fenghui, 2024. "Heat flow topology-driven thermo-mass decoupling strategy: Cross-scale regularization modeling and optimization analysis," Applied Energy, Elsevier, vol. 367(C).
    10. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    11. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
    12. Barelli, L. & Bidini, G. & Ottaviano, A., 2017. "Integration of SOFC/GT hybrid systems in Micro-Grids," Energy, Elsevier, vol. 118(C), pages 716-728.
    13. Ma, Yue & Wang, Zhe & Liu, Han & Tang, Haobo & Ji, Yulong & Han, Fenghui, 2024. "Efficient and sustainable power propulsion for all-electric ships: An integrated methanol-fueled SOFC-sCO2 system," Renewable Energy, Elsevier, vol. 230(C).
    14. Tang, Haobo & Wang, Zhe & Li, Jingwen & Li, Songran & Ji, Yulong & Han, Fenghui, 2025. "Cross-scale modeling and 6E analysis of a cold storage Rankine-Carnot battery and PEMFC coupled system for liquid hydrogen maritime transportation," Energy, Elsevier, vol. 319(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yue & Wang, Zhe & Liu, Han & Tang, Haobo & Ji, Yulong & Han, Fenghui, 2024. "Efficient and sustainable power propulsion for all-electric ships: An integrated methanol-fueled SOFC-sCO2 system," Renewable Energy, Elsevier, vol. 230(C).
    2. Wang, Zhe & Mu, Xichen & Ma, Yuhao & Liao, Pengzhi & Ji, Yulong & Han, Fenghui, 2025. "Advanced energy management and optimal scheduling for integrated offshore gas-hydrogen-electricity-heat systems," Energy, Elsevier, vol. 319(C).
    3. Tang, Haobo & Wang, Zhe & Li, Jingwen & Li, Songran & Ji, Yulong & Han, Fenghui, 2025. "Cross-scale modeling and 6E analysis of a cold storage Rankine-Carnot battery and PEMFC coupled system for liquid hydrogen maritime transportation," Energy, Elsevier, vol. 319(C).
    4. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    5. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    7. Morosuk, Tatiana & Tsatsaronis, George, 2019. "Splitting physical exergy: Theory and application," Energy, Elsevier, vol. 167(C), pages 698-707.
    8. S. Mohammad S. Mahmoudi & Sina Salehi & Mortaza Yari & Marc A. Rosen, 2017. "Exergoeconomic Performance Comparison and Optimization of Single-Stage Absorption Heat Transformers," Energies, MDPI, vol. 10(4), pages 1-28, April.
    9. Seyam, Shaimaa & Dincer, Ibrahim & Agelin-Chaab, Martin, 2024. "Optimization and comparative evaluation of novel marine engines integrated with fuel cells using sustainable fuel choices," Energy, Elsevier, vol. 301(C).
    10. Eduardo J. C. Cavalcanti & Daniel R. S. da Silva & Monica Carvalho, 2022. "Life Cycle and Exergoenvironmental Analyses of Ethanol: Performance of a Flex-Fuel Spark-Ignition Engine at Wide-Open Throttle Conditions," Energies, MDPI, vol. 15(4), pages 1-19, February.
    11. Mergenthaler, Pieter & Schinkel, Arndt-Peter & Tsatsaronis, George, 2017. "Application of exergoeconomic, exergoenvironmental, and advanced exergy analyses to Carbon Black production," Energy, Elsevier, vol. 137(C), pages 898-907.
    12. Yang, Kun & He, Yiyun & Du, Na & Yan, Ping & Zhu, Neng & Chen, Yuzhu & Wang, Jun & Lund, Peter D., 2024. "Exergy, exergoeconomic, and exergoenvironmental analyses of novel solar- and biomass-driven trigeneration system integrated with organic Rankine cycle," Energy, Elsevier, vol. 301(C).
    13. Cheng, Tianliang & Jiang, Jianhua & Wu, Xiaodong & Li, Xi & Xu, Mengxue & Deng, Zhonghua & Li, Jian, 2019. "Application oriented multiple-objective optimization, analysis and comparison of solid oxide fuel cell systems with different configurations," Applied Energy, Elsevier, vol. 235(C), pages 914-929.
    14. Rocha, Danilo H.D. & Siqueira, Diana S. & Silva, Rogério J., 2021. "Exergoenvironmental analysis for evaluating coal-fired power plants technologies," Energy, Elsevier, vol. 233(C).
    15. Cassetti, G. & Rocco, M.V. & Colombo, E., 2014. "Exergy based methods for economic and risk design optimization of energy systems: Application to a gas turbine," Energy, Elsevier, vol. 74(C), pages 269-279.
    16. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    17. Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2022. "Exergy-based weighted optimization and smart decision-making for renewable energy systems considering economics, reliability, risk, and environmental assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Cavalcanti, Eduardo J.C. & Carvalho, Monica & B. Azevedo, Jonathan L., 2019. "Exergoenvironmental results of a eucalyptus biomass-fired power plant," Energy, Elsevier, vol. 189(C).
    19. Seyam, Shaimaa & Dincer, Ibrahim & Agelin-Chaab, Martin, 2023. "A comprehensive assessment of a new hybrid combined marine engine using alternative fuel blends," Energy, Elsevier, vol. 283(C).
    20. Daniele Fiaschi & Giampaolo Manfrida & Karolina Petela & Federico Rossi & Adalgisa Sinicropi & Lorenzo Talluri, 2020. "Exergo-Economic and Environmental Analysis of a Solar Integrated Thermo-Electric Storage," Energies, MDPI, vol. 13(13), pages 1-21, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.