IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i3d10.1007_s10668-023-03015-4.html
   My bibliography  Save this article

Application of BIM in conjunction with circular economy principles for sustainable construction

Author

Listed:
  • J. S. Sudarsan

    (NICMAR University)

  • Hindavi Gavali

    (NICMAR University)

Abstract

With the rising population and urbanization in developing countries, the building sector must contribute to sustainable construction. To achieve this, it must consider suitable design methodology, circular financial models, and holistic processes like information modeling, as collaboration is the fundamental tool for producing better outcomes. In the present study, different design alternatives, one conventional and the other with the proposed materials and methods were analyzed computationally for their cost and environmental impacts with the help of a residential building case. The results show that sustainable construction practices, such as low cost and less carbon-emitting materials reduced the overall cost by 25% and carbon emissions by 20%. Moreover, vital practices are recommended to meet the circular economy’s objectives in building construction. Graphical Abstract

Suggested Citation

  • J. S. Sudarsan & Hindavi Gavali, 2024. "Application of BIM in conjunction with circular economy principles for sustainable construction," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 7455-7468, March.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-03015-4
    DOI: 10.1007/s10668-023-03015-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03015-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03015-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charef, Rabia & Ganjian, Eshmaiel & Emmitt, Stephen, 2021. "Socio-economic and environmental barriers for a holistic asset lifecycle approach to achieve circular economy: A pattern-matching method," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    2. Stephan, André & Stephan, Laurent, 2020. "Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate," Applied Energy, Elsevier, vol. 280(C).
    3. Anil Sawhney & Prateek Singhal, 2013. "Drivers and Barriers to the Use of Building Information Modelling in India," International Journal of 3-D Information Modeling (IJ3DIM), IGI Global, vol. 2(3), pages 46-63, July.
    4. Kai Xue & Md. Uzzal Hossain & Meng Liu & Mingjun Ma & Yizhi Zhang & Mengqiang Hu & XiaoYi Chen & Guangyu Cao, 2021. "BIM Integrated LCA for Promoting Circular Economy towards Sustainable Construction: An Analytical Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    5. Duić, Neven & Guzović, Zvonimir & Kafarov, Vyatcheslav & Klemeš, Jiří Jaromír & Mathiessen, Brian vad & Yan, Jinyue, 2013. "Sustainable development of energy, water and environment systems," Applied Energy, Elsevier, vol. 101(C), pages 3-5.
    6. Rosaliya Kurian & Kishor Sitaram Kulkarni & Prasanna Venkatesan Ramani & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Estimation of Carbon Footprint of Residential Building in Warm Humid Climate of India through BIM," Energies, MDPI, vol. 14(14), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saman Davari & Meisam Jaberi & Adam Yousfi & Erik Poirier, 2023. "A Traceability Framework to Enable Circularity in the Built Environment," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    2. Ahmad, Farhan & Bask, Anu & Laari, Sini & Robinson, Craig V., 2023. "Business management perspectives on the circular economy: Present state and future directions," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    3. Adamczyk, Janusz & Dylewski, Robert, 2017. "The impact of thermal insulation investments on sustainability in the construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 421-429.
    4. Bas Wouterszoon Jansen & Anne van Stijn & Vincent Gruis & Gerard van Bortel, 2022. "Cooking Up a Circular Kitchen: A Longitudinal Study of Stakeholder Choices in the Development of a Circular Building Component," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    5. Roope Husgafvel & Daishi Sakaguchi, 2021. "Circular Economy Development in the Construction Sector in Japan," World, MDPI, vol. 3(1), pages 1-26, December.
    6. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    7. Mottaghizadeh, Pegah & Jabbari, Faryar & Brouwer, Jack, 2022. "Integrated solid oxide fuel cell, solar PV, and battery storage system to achieve zero net energy residential nanogrid in California," Applied Energy, Elsevier, vol. 323(C).
    8. Ahmadi, Mohammad Mahdi & Keyhani, Alireza & Rosen, Marc A. & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Towards sustainable net-zero districts using the extended exergy accounting concept," Renewable Energy, Elsevier, vol. 197(C), pages 747-764.
    9. Kim, Junbeum & Guillaume, Bertrand & Chung, Jinwook & Hwang, Yongwoo, 2015. "Critical and precious materials consumption and requirement in wind energy system in the EU 27," Applied Energy, Elsevier, vol. 139(C), pages 327-334.
    10. Varun Pratap Singh & Gaurav Dwivedi, 2023. "Technical Analysis of a Large-Scale Solar Updraft Tower Power Plant," Energies, MDPI, vol. 16(1), pages 1-28, January.
    11. Liew, Peng Yen & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2014. "A retrofit framework for Total Site heat recovery systems," Applied Energy, Elsevier, vol. 135(C), pages 778-790.
    12. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    13. Jane Loveday & Gregory M. Morrison & David A. Martin, 2022. "Identifying Knowledge and Process Gaps from a Systematic Literature Review of Net-Zero Definitions," Sustainability, MDPI, vol. 14(5), pages 1-37, March.
    14. Yang, Gaoqiang & Mo, Jingke & Kang, Zhenye & Dohrmann, Yeshi & List, Frederick A. & Green, Johney B. & Babu, Sudarsanam S. & Zhang, Feng-Yuan, 2018. "Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting," Applied Energy, Elsevier, vol. 215(C), pages 202-210.
    15. Hackl, Roman & Harvey, Simon, 2013. "Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters," Applied Energy, Elsevier, vol. 112(C), pages 1500-1509.
    16. Li, Chaofan & Liu, Dongzhi & Zhang, Yalei & Li, Shuangfei & He, Deqiang & Chen, Yanjun, 2024. "Experimental study of electric field combined nanofluid to enhance vapor generation in the solar steam generator," Renewable Energy, Elsevier, vol. 237(PC).
    17. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    18. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    19. Sun, Li & Gai, Limei & Smith, Robin, 2017. "Site utility system optimization with operation adjustment under uncertainty," Applied Energy, Elsevier, vol. 186(P3), pages 450-456.
    20. Adetayo Onososen & Innocent Musonda & Motheo Meta Tjebane, 2022. "Drivers of BIM-Based Life Cycle Sustainability Assessment of Buildings: An Interpretive Structural Modelling Approach," Sustainability, MDPI, vol. 14(17), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-03015-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.