IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i2d10.1007_s10668-023-02935-5.html
   My bibliography  Save this article

A novel method for forecasting renewable energy consumption structure based on compositional data: evidence from China, the USA, and Canada

Author

Listed:
  • Caiyue Xu

    (Wuhan University of Technology)

  • Xinping Xiao

    (Wuhan University of Technology)

  • Hui Chen

    (Yangtze Memory Technologies Co., Ltd.)

Abstract

Prediction of renewable energy consumption structure (RECS) can provide important guidance for energy development planning and energy structure transformation. The RECS refer to the proportion of various renewable energy consumptions and belong to compositional data, which could reflect the structural shapes of a complete system better. The multivariate compositional data’s vector autoregressive model (CDVAR) on the basis of the Simplex space and its algebraic system is proposed in this study aiming at the multi-dimensional small sample size. Firstly, the algebraic system of the Simplex space is introduced and the statistics of the compositional data are defined. Secondly, the novel model with the form of the compositional data is obtained and the least square parameter estimation of the model is derived according to Aitchison geometry. Third, the validation of the novel model is verified by the data on RECS in countries (China, USA, and Canada). The validation presents that the proposed model performs better in fitting, prediction, stability, and applicability compared with other five models under transformation. Last, the proposed model is applied to analyze and forecast the RECS of the above countries in 2021–2025 to provide an important basis for the optimization of the RECS.

Suggested Citation

  • Caiyue Xu & Xinping Xiao & Hui Chen, 2024. "A novel method for forecasting renewable energy consumption structure based on compositional data: evidence from China, the USA, and Canada," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 5299-5333, February.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:2:d:10.1007_s10668-023-02935-5
    DOI: 10.1007/s10668-023-02935-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-02935-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-02935-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zulfiqar Ali Baloch & Qingmei Tan & Hafiz Waqas Kamran & Muhammad Atif Nawaz & Gadah Albashar & Javaria Hameed, 2022. "A multi-perspective assessment approach of renewable energy production: policy perspective analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2164-2192, February.
    2. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "COVID-19 lockdowns and air quality: Evidence from grey spatiotemporal forecasts," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    3. Mohd Alsaleh & A. S. Abdul-Rahim, 2019. "Financial Development and Bioenergy Consumption in the EU28 Region: Evidence from Panel Auto-Regressive Distributed Lag Bound Approach," Resources, MDPI, vol. 8(1), pages 1-13, February.
    4. Yigang Wei & Zhichao Wang & Huiwen Wang & Yan Li & Zhenyu Jiang, 2019. "Predicting population age structures of China, India, and Vietnam by 2030 based on compositional data," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-42, April.
    5. Yuansheng Huang & Lei Yang & Chong Gao & Yuqing Jiang & Yulin Dong, 2019. "A Novel Prediction Approach for Short-Term Renewable Energy Consumption in China Based on Improved Gaussian Process Regression," Energies, MDPI, vol. 12(21), pages 1-17, November.
    6. Iskander Tlili, 2015. "Renewable energy in Saudi Arabia: current status and future potentials," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 859-886, August.
    7. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    8. Zhang, Kai & Yin, Kedong & Yang, Wendong, 2022. "Predicting bioenergy power generation structure using a newly developed grey compositional data model: A case study in China," Renewable Energy, Elsevier, vol. 198(C), pages 695-711.
    9. Jiang, Ping & Yang, Hufang & Li, Hongmin & Wang, Ying, 2021. "A developed hybrid forecasting system for energy consumption structure forecasting based on fuzzy time series and information granularity," Energy, Elsevier, vol. 219(C).
    10. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    11. Huiwen Wang & Liying Shangguan & Rong Guan & Lynne Billard, 2015. "Principal component analysis for compositional data vectors," Computational Statistics, Springer, vol. 30(4), pages 1079-1096, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    2. Xinping Xiao & Xue Li, 2023. "A novel compositional data model for predicting the energy consumption structures of Europe, Japan, and China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11673-11698, October.
    3. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector," Renewable Energy, Elsevier, vol. 181(C), pages 803-819.
    4. Li, Xuemei & Shi, Yansong & Zhao, Yufeng & Wu, Yajie & Zhou, Shiwei, 2024. "Seasonal waste, geotherm, nuclear, wood net power generations forecasting using a novel hybrid grey model with seasonally buffered and time-varying effect," Applied Energy, Elsevier, vol. 368(C).
    5. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    6. Wang, Zheng-Xin & Jv, Yue-Qi, 2021. "A non-linear systematic grey model for forecasting the industrial economy-energy-environment system," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    7. Sun, Yunpeng & Tian, Wenjuan & Mehmood, Usman & Zhang, Xiaoyu & Tariq, Salman, 2023. "How do natural resources, urbanization, and institutional quality meet with ecological footprints in the presence of income inequality and human capital in the next eleven countries?," Resources Policy, Elsevier, vol. 85(PA).
    8. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    9. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    10. Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
    11. Meixia Wang, 2024. "Predicting China’s Energy Consumption and CO 2 Emissions by Employing a Novel Grey Model," Energies, MDPI, vol. 17(21), pages 1-25, October.
    12. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
    13. Geng, Yaxin & Rao, Pinyang & Sharif, Arshian, 2022. "Natural resource management and ecological sustainability: Dynamic role of social disparity and human development in G10 Economies," Resources Policy, Elsevier, vol. 79(C).
    14. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    15. Wang, Chen & Zhang, Shenghui & Liao, Peng & Fu, Tonglin, 2022. "Wind speed forecasting based on hybrid model with model selection and wind energy conversion," Renewable Energy, Elsevier, vol. 196(C), pages 763-781.
    16. Liu, Fengyu & Feng, Jue & Zhai, Ge & Razzaq, Asif, 2022. "Influence of fiscal decentralization and renewable energy investment on ecological sustainability in EU: What is the moderating role of institutional governance?," Renewable Energy, Elsevier, vol. 200(C), pages 1265-1274.
    17. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    18. Barakat, Shimaa & Elkhouly, Heba I. & Al Muflih, Ali & Harraz, Nermine, 2024. "Hybrid renewable hydrogen systems in Saudi Arabia: A techno-economic evaluation for three diverse locations," Renewable Energy, Elsevier, vol. 237(PB).
    19. Muhammad Ikram, 2021. "Models for Predicting Non-Renewable Energy Competing with Renewable Source for Sustainable Energy Development: Case of Asia and Oceania Region," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 133-160, December.
    20. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:2:d:10.1007_s10668-023-02935-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.