IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i11d10.1007_s10668-023-03858-x.html
   My bibliography  Save this article

Washing walnut shells with the aqueous part of pyrolysis liquids: effect on biomass and pyrolysis product quality

Author

Listed:
  • Liang Zhu

    (University of Science and Technology of China
    National University of Singapore)

  • Fangbin Wang

    (Hefei University of Technology)

  • Jing Qi

    (National University of Singapore
    Anhui Agricultural University)

Abstract

Biomass, as a renewable and clean energy source, can be utilized for partial fuel substitution through the process of fast pyrolysis, which converts it into bio-oil. However, the presence of naturally occurring metallic elements in biomass has an adverse effect on its pyrolysis process. In this study, the aqueous fraction separated from biomass pyrolysis liquid, characterized by its acidity and high water content, was used for washing pretreatment of walnut shells. The analysis of the treated walnut shells was meticulously conducted employing techniques, including inductively coupled plasma mass spectrometry, thermogravimetric analyzer, and pyrolyzer-gas chromatography/mass spectrometer. The results indicate that this method has a positive influence on the composition and structure of walnut shells, with removal rates of 75% for Na and 45% for K. The thermal decomposition peak on the thermogravimetric curve became more distinct and shifted to higher temperatures. In additionally, the maximum weight loss rate increases to 0.83 °C/%, and the final residue decreased to 17%. The yields of acids and ketones in the pyrolysis products decreased by 49.43% and 53.69%, respectively. Meanwhile, the yields of phenols and sugars increased by 17.43% and 80%, respectively. Furthermore, the influence of pyrolysis conditions (temperature and time) on the pyrolysis products was investigated, and the optimal pyrolysis conditions (500 °C and 20 s) were determined. Therefore, washing pretreatment of the aqueous part of pyrolysis liquid can effectively enhance the quality of biomass and pyrolysis products. It not only contributes to improving the utilization value of pyrolysis liquid by-product but also holds practical significance for the sustainable use of resources and energy production.

Suggested Citation

  • Liang Zhu & Fangbin Wang & Jing Qi, 2024. "Washing walnut shells with the aqueous part of pyrolysis liquids: effect on biomass and pyrolysis product quality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29169-29187, November.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:11:d:10.1007_s10668-023-03858-x
    DOI: 10.1007/s10668-023-03858-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03858-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03858-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mu, Lin & Li, Tong & Wang, Zhen & Shang, Yan & Yin, Hongchao, 2021. "Influence of water/acid washing pretreatment of aquatic biomass on ash transformation and slagging behavior during co-firing with bituminous coal," Energy, Elsevier, vol. 234(C).
    2. Abhishek Kumar & Tanushree Bhattacharya, 2021. "Biochar: a sustainable solution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6642-6680, May.
    3. Thiagarajan Janakiraman & Abhijeet Pathy & Srividhya Poosari Kumaravel & Balasubramanian Paramasivan, 2022. "Effect of coconut shell in gasification kinetics of palm kernel shells at various blending ratios," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8333-8350, June.
    4. Pravin R. Sonarkar & Ashish S. Chaurasia, 2019. "Thermal performance of three improved biomass-fired cookstoves using fuel wood, wood pellets and coconut shell," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1429-1449, June.
    5. Yang, Ke & Wu, Kai & Zhang, Huiyan, 2022. "Machine learning prediction of the yield and oxygen content of bio-oil via biomass characteristics and pyrolysis conditions," Energy, Elsevier, vol. 254(PB).
    6. Yunwei Li & Qiuping Ji & Zijie Wang & Zishan Xiong & Simeng Zhan & Yiping Yang & Yu Hao, 2022. "Green energy mismatch, industrial intelligence and economics growth: theory and empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11785-11816, October.
    7. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    8. Li, Bin & Huang, Huimin & Xie, Xing & Wei, Juntao & Zhang, Shu & Hu, Xun & Zhang, Shihong & Liu, Dongjing, 2023. "Volatile-char interactions during biomass pyrolysis: Effects of AAEMs removal and KOH addition in char," Renewable Energy, Elsevier, vol. 219(P1).
    9. Xiangsheng Dou, 2015. "The essence, feature and role of low carbon economy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(1), pages 123-136, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayant Kumar & Savita Vyas, 2025. "Comprehensive review of biomass utilization and gasification for sustainable energy production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 1-40, March.
    2. Chen, Xiangmeng & Shafizadeh, Alireza & Shahbeik, Hossein & Nadian, Mohammad Hossein & Golvirdizadeh, Milad & Peng, Wanxi & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2025. "Enhanced bio-oil production from biomass catalytic pyrolysis using machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    3. Roberts, Cameron & Greene, Jenna & Nemet, Gregory F., 2023. "Key enablers for carbon dioxide removal through the application of biochar to agricultural soils: Evidence from three historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    4. Weijie Jiang & Jiaying Dai & Kairui Cao & Laiqun Jin, 2023. "Who Needs to Save Energy and Reduce Emissions? Perspective of Energy Misallocation and Economies of Scale," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    5. Ren, Yi & Wang, Zhiyong & Chen, Jianbiao & Gao, Haojie & Guo, Kai & Wang, Xu & Wang, Xiaoyuan & Wang, Yinfeng & Chen, Haijun & Zhu, Jinjiao & Zhu, Yuezhao, 2023. "Effect of water/acetic acid washing pretreatment on biomass chemical looping gasification (BCLG) using cost-effective oxygen carrier from iron-rich sludge ash," Energy, Elsevier, vol. 272(C).
    6. Saidi, Majid & Faraji, Mehdi, 2024. "Thermochemical conversion of neem seed biomass to sustainable hydrogen and biofuels: Experimental and theoretical evaluation," Renewable Energy, Elsevier, vol. 221(C).
    7. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    8. Li, Jishuo & Wang, Tie & Hao, Tengteng & Yao, Xiwen & Xu, Kaili & Liu, Jia, 2025. "Application of biochar catalysts in tar catalytic reforming: A review on preparation, modification, deactivation, and regeneration," Energy, Elsevier, vol. 317(C).
    9. Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
    10. Wang, Hui & Bi, Dongmei & He, Zhisen & Yi, Weiming & Liu, Shanjian & Yao, Jingang & Zhang, Guanshuai, 2025. "Machine learning-based stacked ensemble model for predicting and regulating oxygen-containing compounds in nitrogen-rich pyrolysis bio-oil," Renewable Energy, Elsevier, vol. 241(C).
    11. Ma, Jingjing & Zhang, Shuai & Liu, Xiangjun & Wang, Junqi, 2025. "Neural network-based prediction of levoglucosan yield: A novel modeling approach," Energy, Elsevier, vol. 320(C).
    12. Carolina Restrepo Londoño & Alexander Giraldo Gil & Andrés Moreno & Pedro Nel Alvarado, 2024. "Valorization of Spent Mushroom Compost Through a Cascading Use Aproach," Energies, MDPI, vol. 17(21), pages 1-26, October.
    13. Li, Jun & Zhong, Dian & Zeng, Kuo & Chen, Xin & Wu, Boyang & Liu, Tianji & Yang, Haiping & Chen, Hanping, 2024. "Co-pyrolysis of algae and lignocellulosic biomass in molten salts to produce N-doped carbon for supercapacitor application," Energy, Elsevier, vol. 305(C).
    14. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
    15. Ali, Mujahid & Mahmood, Faisal & Magoua Mbeugang, Christian Fabrice & Tang, Jiazhen & Xie, Xing & Li, Bin, 2025. "Molten chloride salt pyrolysis of biomass: Effects of temperature and mass ratio of molten salt to biomass," Energy, Elsevier, vol. 316(C).
    16. Xiangsheng Dou & Huanying Cui, 2017. "Low-carbon society creation and socio-economic structural transition in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(5), pages 1577-1599, October.
    17. Ekaterina A. Syrtsova & Ekaterina D. Ivantsova & Alexandra S. Miskiv & Evgeniya V. Zander & Anton I. Pyzhev, 2024. "Costs of Coal Abatement for Residential Heating to Reduce Urban Air Pollution in Asian Russia: Evidence from Krasnoyarsk," Energies, MDPI, vol. 17(3), pages 1-15, January.
    18. Zhang, Qiyan & Liu, Yanxing & Cao, Yuhao & Li, Zhengyuan & Hou, Jiachen & Gou, Xiang, 2023. "Parametric study and optimization of MEA-based carbon capture for a coal and biomass co-firing power plant," Renewable Energy, Elsevier, vol. 205(C), pages 838-850.
    19. Ahmed Mosa & Mostafa M. Mansour & Enas Soliman & Ayman El-Ghamry & Mohamed El Alfy & Ahmed M. El Kenawy, 2023. "Biochar as a Soil Amendment for Restraining Greenhouse Gases Emission and Improving Soil Carbon Sink: Current Situation and Ways Forward," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    20. Alexander Astafev & Ivan Shanenkov & Kanipa Ibraeva & Roman Tabakaev & Sergei Preis, 2022. "Autothermal Siberian Pine Nutshell Pyrolysis Maintained by Exothermic Reactions," Energies, MDPI, vol. 15(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:11:d:10.1007_s10668-023-03858-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.