IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i9d10.1007_s10668-022-02424-1.html
   My bibliography  Save this article

Environmental footprints of soybean production in China

Author

Listed:
  • Qian Zhang

    (Shandong Normal University)

  • Jinglan Hong

    (Shandong University)

  • Tianzuo Zhang

    (Shandong University)

  • Xu Tian

    (Shanghai Jiao Tong University)

  • Yong Geng

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Wei Chen

    (Shandong Normal University)

  • Yijie Zhai

    (Shandong University)

  • Wenjing Liu

    (Beijing Municipal Finance of Beijing)

  • Xiaoxu Shen

    (Shandong University)

  • Yueyang Bai

    (Shandong University)

Abstract

As a significant protein source for humans and animals, soybean (Glycine max) has experienced a fast growth with the rapid development of population and economy. Despite broad interest in energy consumption and CO2 emissions generated by soybean production, there are few impact-oriented water footprint assessments of soybean production. This study evaluates the fossil energy, carbon, and water footprints of China’s soybean production so that key environmental impacts can be identified. To provide reliable results for decision-making, uncertainty analysis is conducted based on the Monte Carlo model. Results show that the impact on climate change, ecosystem quality, human health, and resources is 3.33 × 103 kg CO2 eq (GSD2 = 1.87), 6.18 × 10−5 Species·yr (GSD2 = 1.81), 3.26 × 10−3 Disability-adjusted Life Years (GSD2 = 1.81), and 81.51 $ (GSD2 = 2.28), respectively. Freshwater ecotoxicity is the dominant contributor (77.69%) to the ecosystem quality category, while climate change (85.22%) is the dominant contributor to the human health category. Key factors analysis results show that diammonium phosphate and diesel, and on-site emissions, are the major contributors to the overall environmental burden of soybean production. Several policy recommendations are proposed, focusing on trade structure optimization, efficient resource use, and technological improvements. Such policy recommendations provide valuable insights to those decision-makers so that they can prepare appropriate mitigation policies.

Suggested Citation

  • Qian Zhang & Jinglan Hong & Tianzuo Zhang & Xu Tian & Yong Geng & Wei Chen & Yijie Zhai & Wenjing Liu & Xiaoxu Shen & Yueyang Bai, 2023. "Environmental footprints of soybean production in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9047-9065, September.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:9:d:10.1007_s10668-022-02424-1
    DOI: 10.1007/s10668-022-02424-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02424-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02424-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Fuchs & Peter Alexander & Calum Brown & Frances Cossar & Roslyn C. Henry & Mark Rounsevell, 2019. "Why the US–China trade war spells disaster for the Amazon," Nature, Nature, vol. 567(7749), pages 451-454, March.
    2. Erfan Haghighi & Kaveh Madani & Arjen Y. Hoekstra, 2018. "The water footprint of water conservation using shade balls in California," Nature Sustainability, Nature, vol. 1(7), pages 358-360, July.
    3. Markus Berger & Matthias Finkbeiner, 2013. "Methodological Challenges in Volumetric and Impact‐Oriented Water Footprints," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 79-89, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Yijie & Zhang, Tianzuo & Ma, Xiaotian & Shen, Xiaoxu & Ji, Changxing & Bai, Yueyang & Hong, Jinglan, 2021. "Life cycle water footprint analysis of crop production in China," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Han, Ke-Wu & Shi, Ke-Bin & Yan, Xin-Jun & Ouyang, Jun & Lei, Peng & Hao, Guo-Chen, 2022. "Comparison of evaporation estimation methods for water surface under floating coverage in arid areas," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Amani Elobeid & Miguel Carriquiry & Jerome Dumortier & David Swenson & Dermot J. Hayes, 2021. "China‐U.S. trade dispute and its impact on global agricultural markets, the U.S. economy, and greenhouse gas emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 647-672, September.
    4. Han, Ke-Wu & Shi, Ke-Bin & Yan, Xin-Jun, 2020. "Evaporation loss and energy balance of agricultural reservoirs covered with counterweighted spheres in arid region," Agricultural Water Management, Elsevier, vol. 238(C).
    5. Iulia Dolganova & Natalia Mikosch & Markus Berger & Montserrat Núñez & Andrea Müller-Frank & Matthias Finkbeiner, 2019. "The Water Footprint of European Agricultural Imports: Hotspots in the Context of Water Scarcity," Resources, MDPI, vol. 8(3), pages 1-11, August.
    6. Zhai, Yijie & Bai, Yueyang & Wu, Zhen & Hong, Jinglan & Shen, Xiaoxu & Xie, Fei & Li, Xiangzhi, 2022. "Grain self-sufficiency versus environmental stress: An integration of system dynamics and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Vicente Lopez‐Ibor Mayor & Fazlun Khalid & Nafeez Mosaddeq Ahmed, 2021. "EU–Asian–American Partnership for a Third Industrial Revolution: Transitioning to High Productivity, Sustainable Infrastructures in the Age of COVID‐19," Global Policy, London School of Economics and Political Science, vol. 12(3), pages 380-391, May.
    8. Gaudard, Ludovic & Madani, Kaveh, 2019. "Energy storage race: Has the monopoly of pumped-storage in Europe come to an end?," Energy Policy, Elsevier, vol. 126(C), pages 22-29.
    9. Hao, Guochen & Han, Kewu & Shi, Kebin, 2023. "Effect of floating balls on evaporation inhibition, surface energy balance and biological water quality parameters at different coverage fractions," Agricultural Water Management, Elsevier, vol. 287(C).
    10. Eva Polyak & Zita Breitenbach & Eszter Frank & Olivia Mate & Maria Figler & Dorottya Zsalig & Klara Simon & Mate Szijarto & Zoltan Szabo, 2023. "Food and Sustainability: Is It a Matter of Choice?," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    11. Svitlana Boychenko & Tetyana Kuchma & Ievgen V. Khlobystov, 2022. "Changes in the Water Surface Area of Reservoirs of the Crimean Peninsula and Artificial Increases in Precipitation as One of the Possible Solutions to Water Shortages," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    12. Zongyong Zhang & Junguo Liu & Bofeng Cai & Yuli Shan & Heran Zheng & Xian Li & Xukun Li & Dabo Guan, 2020. "City‐level water withdrawal in China: Accounting methodology and applications," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 951-964, October.
    13. Su, Dan & Cao, Yu & Wang, Jiayi & Fang, Xiaoqian & Wu, Qing, 2023. "Toward constructing an eco-account of cultivated land by quantifying the resources flow and eco-asset transfer in China," Land Use Policy, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:9:d:10.1007_s10668-022-02424-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.