IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v1y2018i7d10.1038_s41893-018-0092-2.html
   My bibliography  Save this article

The water footprint of water conservation using shade balls in California

Author

Listed:
  • Erfan Haghighi

    (Massachusetts Institute of Technology
    Swiss Federal Institute of Aquatic Science and Technology)

  • Kaveh Madani

    (Imperial College London
    Stockholm University)

  • Arjen Y. Hoekstra

    (University of Twente
    National University of Singapore)

Abstract

The interest in quick technologic fixes to complex water problems increases during extreme hydroclimatic events. However, past evidence shows that such fixes might be associated with unintended consequences. We revisit the idea of using shade balls in the Los Angeles reservoir to reduce evaporation during the recent drought in California, and question its sustainability by revealing the water footprint of this technologic water conservation solution.

Suggested Citation

  • Erfan Haghighi & Kaveh Madani & Arjen Y. Hoekstra, 2018. "The water footprint of water conservation using shade balls in California," Nature Sustainability, Nature, vol. 1(7), pages 358-360, July.
  • Handle: RePEc:nat:natsus:v:1:y:2018:i:7:d:10.1038_s41893-018-0092-2
    DOI: 10.1038/s41893-018-0092-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-018-0092-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-018-0092-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Ke-Wu & Shi, Ke-Bin & Yan, Xin-Jun, 2020. "Evaporation loss and energy balance of agricultural reservoirs covered with counterweighted spheres in arid region," Agricultural Water Management, Elsevier, vol. 238(C).
    2. Svitlana Boychenko & Tetyana Kuchma & Ievgen V. Khlobystov, 2022. "Changes in the Water Surface Area of Reservoirs of the Crimean Peninsula and Artificial Increases in Precipitation as One of the Possible Solutions to Water Shortages," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    3. Gaudard, Ludovic & Madani, Kaveh, 2019. "Energy storage race: Has the monopoly of pumped-storage in Europe come to an end?," Energy Policy, Elsevier, vol. 126(C), pages 22-29.
    4. Hao, Guochen & Han, Kewu & Shi, Kebin, 2023. "Effect of floating balls on evaporation inhibition, surface energy balance and biological water quality parameters at different coverage fractions," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Eva Polyak & Zita Breitenbach & Eszter Frank & Olivia Mate & Maria Figler & Dorottya Zsalig & Klara Simon & Mate Szijarto & Zoltan Szabo, 2023. "Food and Sustainability: Is It a Matter of Choice?," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    6. Su, Dan & Cao, Yu & Wang, Jiayi & Fang, Xiaoqian & Wu, Qing, 2023. "Toward constructing an eco-account of cultivated land by quantifying the resources flow and eco-asset transfer in China," Land Use Policy, Elsevier, vol. 132(C).
    7. Qian Zhang & Jinglan Hong & Tianzuo Zhang & Xu Tian & Yong Geng & Wei Chen & Yijie Zhai & Wenjing Liu & Xiaoxu Shen & Yueyang Bai, 2023. "Environmental footprints of soybean production in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9047-9065, September.
    8. Han, Ke-Wu & Shi, Ke-Bin & Yan, Xin-Jun & Ouyang, Jun & Lei, Peng & Hao, Guo-Chen, 2022. "Comparison of evaporation estimation methods for water surface under floating coverage in arid areas," Agricultural Water Management, Elsevier, vol. 264(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:1:y:2018:i:7:d:10.1038_s41893-018-0092-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.