IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i12d10.1007_s10668-022-02694-9.html
   My bibliography  Save this article

Simulation and coordinated development of an economic, energy, and environmental carrying capacity system from the perspective of scientific and technological progress: a case study of the Yangtze River Economic Belt in China

Author

Listed:
  • Wei Wang

    (Nanjing University of Posts and Telecommunications
    Nanjing University of Posts and Telecommunications
    Chinese Academy of Sciences)

  • Haofei Wang

    (Nanjing University of Posts and Telecommunications)

  • Xiuhui Zhou

    (Nanjing University of Posts and Telecommunications
    Nanjing University of Posts and Telecommunications)

Abstract

The current period of rapid industrialization has not only brought about rapid economic growth but also caused serious energy shortages and environmental pollution, which have affected the sustainable development of the economy. Therefore, it is of great significance to analyse the changes in regional economic, energy, and environmental carrying capacity (3ECC); analyse the interaction among them; and propose corresponding optimization strategies for promoting regional sustainable development. In this study, a 3ECC simulation system is constructed from the pressure and support levels of load-bearing capacity. A system dynamics model is used to simulate the evolution path and action relationship of the 3ECC system, and an empirical test is completed in the Yangtze River Economic Belt region in China. A coupling coordination model and Bayesian vector autoregressive model are used to further explore the degree and action mode of the 3ECC system support and pressure indices. The results show that the model can truly reflect the characteristics of regional development and is suitable for prediction in this study. From 2015 to 2035, driven by technological progress, China's economic aggregate will grow by 223%, oil consumption by 33%, coal consumption by 23%, soil pollution by 197%, water pollution by 134%, and air pollution by 80.9%. Moreover, the coordination degree of the 3ECC supporting indicators gradually increases, while that of the pressure indicators gradually decreases, indicating that economic growth has a synergistic effect on environmental protection and energy conservation, thus further expanding the differences between environmental pollution and energy consumption. Finally, the supporting index of the economic carrying capacity and supporting index of the environmental carrying capacity have the widest influence range, and the optimization of economic and environmental development status is beneficial to the overall improvement of the 3ECC system. The influence range of the energy carrying capacity support index is small, indicating that coal and oil are being gradually replaced by other energy sources. Therefore, the research results of this paper can provide a reference for the sustainable development of other regions.

Suggested Citation

  • Wei Wang & Haofei Wang & Xiuhui Zhou, 2023. "Simulation and coordinated development of an economic, energy, and environmental carrying capacity system from the perspective of scientific and technological progress: a case study of the Yangtze Riv," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 14887-14911, December.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:12:d:10.1007_s10668-022-02694-9
    DOI: 10.1007/s10668-022-02694-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02694-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02694-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhili Zuo & Jinhua Cheng & Haixiang Guo & Yonglin Li, 2021. "Comparative Study on Relative Fossil Energy Carrying Capacity in China and the United States," Energies, MDPI, vol. 14(10), pages 1-15, May.
    2. Wang, Ran & Cheng, Jinhua & Zhu, Yali & Lu, Peixin, 2017. "Evaluation on the coupling coordination of resources and environment carrying capacity in Chinese mining economic zones," Resources Policy, Elsevier, vol. 53(C), pages 20-25.
    3. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    4. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    5. Xian’En Wang & Wei Zhan & Shuo Wang, 2020. "Uncertain Water Environment Carrying Capacity Simulation Based on the Monte Carlo Method–System Dynamics Model: A Case Study of Fushun City," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    6. Wei, Shouke & Yang, Hong & Song, Jinxi & Abbaspour, Karim C. & Xu, Zongxue, 2012. "System dynamics simulation model for assessing socio-economic impacts of different levels of environmental flow allocation in the Weihe River Basin, China," European Journal of Operational Research, Elsevier, vol. 221(1), pages 248-262.
    7. Guiyou Zhang & Shuai Luo & Zhuowei Jing & Shuo Wei & Youhua Ma, 2020. "Evaluation and Forewarning Management of Regional Resources and Environment Carrying Capacity: A Case Study of Hefei City, Anhui Province, China," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    8. Chanhoon Jung & Chanwoo Kim & Solhee Kim & Kyo Suh, 2018. "Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guiyou Zhang & Shuai Luo & Zhuowei Jing & Shuo Wei & Youhua Ma, 2020. "Evaluation and Forewarning Management of Regional Resources and Environment Carrying Capacity: A Case Study of Hefei City, Anhui Province, China," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    2. Guiyou Zhang & Yan Lu & Zijun Fang & Hong Yang & Zhong Wei, 2022. "Analysis of the Ecological Carrying Capacity of Fish Resources in Shengjin Lake, Anhui Province, China," IJERPH, MDPI, vol. 19(13), pages 1-13, July.
    3. Meicun Li & Chunmei Mao, 2019. "Spatial-Temporal Variance of Coupling Relationship between Population Modernization and Eco-Environment in Beijing-Tianjin-Hebei," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    4. Opschoor, J. (Hans) B., 1995. "Ecospace and the fall and rise of throughput intensity," Ecological Economics, Elsevier, vol. 15(2), pages 137-140, November.
    5. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    6. G. Mythili & Shibashis Mukherjee, 2011. "Examining Environmental Kuznets Curve for river effluents in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 627-640, June.
    7. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    8. Carmen van der Merwe & Martin de Wit, 2021. "An In-Depth Investigation into the Relationship Between Municipal Solid Waste Generation and Economic Growth in the City of Cape Town," Working Papers 07/2021, Stellenbosch University, Department of Economics, revised 2021.
    9. Thomas Bolognesi, 2015. "The water vulnerability of metro and megacities: An investigation of structural determinants," Natural Resources Forum, Blackwell Publishing, vol. 39(2), pages 123-133, May.
    10. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    11. Rothman, Dale S., 1998. "Environmental Kuznets curves--real progress or passing the buck?: A case for consumption-based approaches," Ecological Economics, Elsevier, vol. 25(2), pages 177-194, May.
    12. B. Venkatraja, 2021. "Does China exhibit any evidence of an Environmental Kuznets Curve? An ARDL bounds testing approach," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 88-110,111-.
    13. Andreoni, James & Levinson, Arik, 2001. "The simple analytics of the environmental Kuznets curve," Journal of Public Economics, Elsevier, vol. 80(2), pages 269-286, May.
    14. Edyta Kiedrzyńska & Marcin Kiedrzyński & Maciej Zalewski, 2015. "Sustainable floodplain management for flood prevention and water quality improvement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 955-977, March.
    15. W. Neil Adger & Jennifer Hodbod, 2014. "Ecological and social resilience," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 6, pages 91-102, Edward Elgar Publishing.
    16. Costantini, Valeria & Monni, Salvatore, 2008. "Environment, human development and economic growth," Ecological Economics, Elsevier, vol. 64(4), pages 867-880, February.
    17. Himayatullah Khan & Ehsan Inamullah & Khadija Shams, 2009. "Population, environment and poverty in Pakistan: linkages and empirical evidence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(2), pages 375-392, April.
    18. Funk, Matt, 2008. "On the Problem of Sustainable Economic Development: A Theoretical Solution to this Prisoner's Dilemma," MPRA Paper 19025, University Library of Munich, Germany, revised 08 Jun 2008.
    19. Marta Santagata & Enrico Ivaldi & Riccardo Soliani, 2019. "Development and Governance in the Ex-Soviet Union: An Empirical Inquiry," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 157-190, January.
    20. Hörisch, Jacob & Ortas, Eduardo & Schaltegger, Stefan & Álvarez, Igor, 2015. "Environmental effects of sustainability management tools: An empirical analysis of large companies," Ecological Economics, Elsevier, vol. 120(C), pages 241-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:12:d:10.1007_s10668-022-02694-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.