IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i3d10.1007_s10668-020-00711-3.html
   My bibliography  Save this article

Experimental investigation of a solar cooking system inhibiting closed airtight cooking pot and evacuated tube collector for the preparation of Indian cuisine items

Author

Listed:
  • Ranjan Chaudhary

    (National Institute of Technology)

  • Avadhesh Yadav

    (National Institute of Technology)

Abstract

The cooking of Indian cuisine articles like cracked wheat, red lentils, chickpeas and rice is performed using the closed airtight cooking pot (CATCP). Evacuated tube collector is utilized to provide the heat for cooking with the help of thermic oil which flows in the lower part of CATCP. Cooking load of 1 L for all four articles is considered for before noon cooking, 2 L for afternoon as well as evening hours cooking and 3 L for the before noon and evening hours cooking. The cooking performed at afternoon with 2 L of load takes least time. The maximum value of the temperature of thermic oil at the inlet of CATCP is noted as 149.3 °C, and the maximum value of instantaneous energy of thermal oil in CATCP is observed as 337.1 kJ. Moreover, the system demonstrates a simple design of cooking vessel and feasibility of cooking in the evening hours without the use of phase change material.

Suggested Citation

  • Ranjan Chaudhary & Avadhesh Yadav, 2021. "Experimental investigation of a solar cooking system inhibiting closed airtight cooking pot and evacuated tube collector for the preparation of Indian cuisine items," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3164-3186, March.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00711-3
    DOI: 10.1007/s10668-020-00711-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00711-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00711-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farooqui, Suhail Zaki, 2015. "Impact of load variation on the energy and exergy efficiencies of a single vacuum tube based solar cooker," Renewable Energy, Elsevier, vol. 77(C), pages 152-158.
    2. Asafu-Adjaye, John, 2000. "The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries," Energy Economics, Elsevier, vol. 22(6), pages 615-625, December.
    3. Harmim, A. & Belhamel, M. & Boukar, M. & Amar, M., 2010. "Experimental investigation of a box-type solar cooker with a finned absorber plate," Energy, Elsevier, vol. 35(9), pages 3799-3802.
    4. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    5. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    6. El-Sebaii, A.A. & Domański, R. & Jaworski, M., 1994. "Experimental and theoretical investigation of a box-type solar cooker with multi-step inner reflectors," Energy, Elsevier, vol. 19(10), pages 1011-1021.
    7. Prasanna, U.R. & Umanand, L., 2011. "Optimization and design of energy transport system for solar cooking application," Applied Energy, Elsevier, vol. 88(1), pages 242-251, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Herez, Amal & Ramadan, Mohamad & Khaled, Mahmoud, 2018. "Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 421-432.
    4. Koshti, Bhupendra & Dev, Rahul & Bharti, Ajaya & Narayan, Audhesh, 2023. "Comparative performance evaluation of modified solar cookers for subtropical climate conditions," Renewable Energy, Elsevier, vol. 209(C), pages 505-515.
    5. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    6. Mahavar, S. & Rajawat, P. & Marwal, V.K. & Punia, R.C. & Dashora, P., 2013. "Modeling and on-field testing of a Solar Rice Cooker," Energy, Elsevier, vol. 49(C), pages 404-412.
    7. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    8. Mahavar, S. & Sengar, N. & Dashora, P., 2017. "Analytical model for electric back-up power estimation of solar box type cookers," Energy, Elsevier, vol. 134(C), pages 871-881.
    9. Ashmore Mawire & Sibongiseni M. Simelane & Patrick O. Abedigamba, 2021. "Energetic and exergetic performance comparison of three solar cookers for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14528-14555, October.
    10. Saini, Prashant & Pandey, Sushant & Goswami, Shruti & Dhar, Atul & Mohamed, M.E. & Powar, Satvasheel, 2023. "Experimental and numerical investigation of a hybrid solar thermal-electric powered cooking oven," Energy, Elsevier, vol. 280(C).
    11. Saxena, Abhishek & Varun & Pandey, S.P. & Srivastav, G., 2011. "A thermodynamic review on solar box type cookers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3301-3318, August.
    12. Al-Nehari, Hamoud A. & Mohammed, Mahmoud A. & Odhah, Abdulkarem A. & Al-attab, K.A. & Mohammed, Bakeel K. & Al-Habari, Abdulwahab M. & Al-Fahd, Nasr H., 2021. "Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism," Renewable Energy, Elsevier, vol. 180(C), pages 954-965.
    13. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Ruivo, Celestino Rodrigues, 2022. "Experimental characterization of the thermal performance of the Haines 2 solar cooker," Energy, Elsevier, vol. 257(C).
    14. Bilal Mehmood & Syed Hassan Raza & Mahwish Rana & Huma Sohaib & Muhammad Azhar Khan, 2014. "Triangular Relationship between Energy Consumption, Price Index and National Income in Asian Countries: A Pooled Mean Group Approach in Presence of Structural Breaks," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 610-620.
    15. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2015. "Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution," Economic Modelling, Elsevier, vol. 44(C), pages 104-115.
    16. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    17. Khan, Syed Abdul Rehman & Zaman, Khalid & Zhang, Yu, 2016. "The relationship between energy-resource depletion, climate change, health resources and the environmental Kuznets curve: Evidence from the panel of selected developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 468-477.
    18. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    19. Ansharullah Tasri, 2019. "The Flypaper Effect Phenomenon: Evidence from Indonesia," European Journal of Engineering and Formal Sciences Articles, Revistia Research and Publishing, vol. 2, 2019.
    20. Kaplan, Muhittin & Ozturk, Ilhan & Kalyoncu, Huseyin, 2011. "Energy Consumption and Economic Growth in Turkey: Cointegration and Causality Analysis," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 31-41, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00711-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.