IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i2d10.1007_s10668-020-00632-1.html
   My bibliography  Save this article

Fire foci assessment in the Western Amazon (2000–2015)

Author

Listed:
  • Thais Marcolino Ribeiro

    (Universidade Federal Rural do Rio de Janeiro, Rua da Floresta)

  • Bruno Araujo Furtado Mendonça

    (Universidade Federal Rural do Rio de Janeiro, Rua da Floresta)

  • José Francisco Oliveira-Júnior

    (Universidade Federal de Alagoas, Tabuleiro do Martins)

  • Elpídio Inácio Fernandes-Filho

    (Departamento de Solos, Universidade Federal de Viçosa)

Abstract

Burning is a practice widely used by rural producers in Brazil, mainly in the Amazon region, as the main instrument to prepare the land for agriculture. In this study, we used the data of all heat foci in the Western Amazon, Brazil, provided by the National Institute for Space Research through its Database of Burns (BDQueimadas). This database often has some redundancies owing to the detection of the same burn more than once or capture of the same fire focus by different environmental satellites, resulting in an overestimation of data. In the present study, we optimize a method to reduce redundancies in an extensive database for the Western Amazon for the time period of 2000–2015, using a model for the identification and exclusion of duplicate heat foci, utilizing the ArcGIS 10.2 software. Kernel density estimates were used and correlated with average precipitation of each year obtained from Tropical Rainfall Measuring Mission (TRMM) satellite (product 3B43). From a total of 1,273,971 heat foci obtained from all environmental satellites, only 433,267 were maintained for the whole period of study (2001–2015), indicating a reduction of approximately 66%. NPP-375 (Suomi National Polar-orbiting Partnership, 375 m of spatial resolution) was the most redundant environmental satellite. The fire foci occurrence showed high correlations with rainfall as well as El Niño events. This work could also delineate areas in the Western Amazon that are most vulnerable to drought and resulting fires.

Suggested Citation

  • Thais Marcolino Ribeiro & Bruno Araujo Furtado Mendonça & José Francisco Oliveira-Júnior & Elpídio Inácio Fernandes-Filho, 2021. "Fire foci assessment in the Western Amazon (2000–2015)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1485-1498, February.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:2:d:10.1007_s10668-020-00632-1
    DOI: 10.1007/s10668-020-00632-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00632-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00632-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark A. Cochrane, 2003. "Fire science for rainforests," Nature, Nature, vol. 421(6926), pages 913-919, February.
    2. L. V. Gatti & M. Gloor & J. B. Miller & C. E. Doughty & Y. Malhi & L. G. Domingues & L. S. Basso & A. Martinewski & C. S. C. Correia & V. F. Borges & S. Freitas & R. Braz & L. O. Anderson & H. Rocha &, 2014. "Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements," Nature, Nature, vol. 506(7486), pages 76-80, February.
    3. Daniel C. Nepstad & Adalberto Verssimo & Ane Alencar & Carlos Nobre & Eirivelthon Lima & Paul Lefebvre & Peter Schlesinger & Christopher Potter & Paulo Moutinho & Elsa Mendoza & Mark Cochrane & Vaness, 1999. "Large-scale impoverishment of Amazonian forests by logging and fire," Nature, Nature, vol. 398(6727), pages 505-508, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derek Sheehan & Katrina Mullan & Thales A. P. West & Erin O. Semmens, 2024. "Protecting Life and Lung: Protected Areas Affect Fine Particulate Matter and Respiratory Hospitalizations in the Brazilian Amazon Biome," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(1), pages 45-87, January.
    2. Sandra Lavorel & Mike Flannigan & Eric Lambin & Mary Scholes, 2007. "Vulnerability of land systems to fire: Interactions among humans, climate, the atmosphere, and ecosystems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(1), pages 33-53, January.
    3. Carmenta, Rachel & Cammelli, Federico & Dressler, Wolfram & Verbicaro, Camila & Zaehringer, Julie G., 2021. "Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics," World Development, Elsevier, vol. 145(C).
    4. Bhattacharjee, Arnab & Aravena, Claudia & Castillo, Natalia & Ehrlich, Marco & Taou, Nadia & Wagner, Thomas, 2022. "Agroforestry Programs in the Colombian Amazon: Selection, Treatment and Exposure Effects on Deforestation," National Institute of Economic and Social Research (NIESR) Discussion Papers 537, National Institute of Economic and Social Research.
    5. Tapas Ray & Dinesh Malasiya & Akshkumar Verma & Ekta Purswani & Asif Qureshi & Mohammed Latif Khan & Satyam Verma, 2023. "Characterization of Spatial–Temporal Distribution of Forest Fire in Chhattisgarh, India, Using MODIS-Based Active Fire Data," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    6. Lauk, Christian & Erb, Karl-Heinz, 2009. "Biomass consumed in anthropogenic vegetation fires: Global patterns and processes," Ecological Economics, Elsevier, vol. 69(2), pages 301-309, December.
    7. Boltz, Frederick & Holmes, Thomas P. & Carter, Douglas R., 2003. "Economic and environmental impacts of conventional and reduced-impact logging in Tropical South America: a comparative review," Forest Policy and Economics, Elsevier, vol. 5(1), pages 69-81, January.
    8. U. Persson & Christian Azar, 2007. "Tropical deforestation in a future international climate policy regime—lessons from the Brazilian Amazon," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(7), pages 1277-1304, August.
    9. Schmerbeck, J. & Kohli, A. & Seeland, K., 2015. "Ecosystem services and forest fires in India — Context and policy implications from a case study in Andhra Pradesh," Forest Policy and Economics, Elsevier, vol. 50(C), pages 337-346.
    10. Zhangwen Su & Lujia Zheng & Sisheng Luo & Mulualem Tigabu & Futao Guo, 2021. "Modeling wildfire drivers in Chinese tropical forest ecosystems using global logistic regression and geographically weighted logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1317-1345, August.
    11. Martín Senande-Rivera & Damián Insua-Costa & Gonzalo Miguez-Macho, 2022. "Spatial and temporal expansion of global wildland fire activity in response to climate change," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Kim, Sophanarith & Phat, Nophea Kim & Koike, Masao & Hayashi, Hiromichi, 2006. "Estimating actual and potential government revenues from timber harvesting in Cambodia," Forest Policy and Economics, Elsevier, vol. 8(6), pages 625-635, August.
    13. Erik Lilleskov & Kevin McCullough & Kristell Hergoualc’h & Dennis Castillo Torres & Rodney Chimner & Daniel Murdiyarso & Randy Kolka & Laura Bourgeau-Chavez & John Hribljan & Jhon Aguila Pasquel & Cra, 2019. "Is Indonesian peatland loss a cautionary tale for Peru? A two-country comparison of the magnitude and causes of tropical peatland degradation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(4), pages 591-623, April.
    14. Tommaso Sonno & Davide Zufacchi, 2022. "Epidemics and rapacity of multinational companies," CEP Discussion Papers dp1833, Centre for Economic Performance, LSE.
    15. Daniella Tiemi Sasaki Okida & Osmar Abílio de Carvalho Júnior & Osmar Luiz Ferreira de Carvalho & Roberto Arnaldo Trancoso Gomes & Renato Fontes Guimarães, 2021. "Relationship between Land Property Security and Brazilian Amazon Deforestation in the Mato Grosso State during the Period 2013–2018," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    16. Tola Gemechu Ango & Kristoffer Hylander & Lowe Börjeson, 2020. "Processes of Forest Cover Change since 1958 in the Coffee-Producing Areas of Southwest Ethiopia," Land, MDPI, vol. 9(8), pages 1-29, August.
    17. Andrea Colantoni & Gianluca Egidi & Giovanni Quaranta & Roberto D’Alessandro & Sabato Vinci & Rosario Turco & Luca Salvati, 2020. "Sustainable Land Management, Wildfire Risk and the Role of Grazing in Mediterranean Urban-Rural Interfaces: A Regional Approach from Greece," Land, MDPI, vol. 9(1), pages 1-16, January.
    18. Dislich, Claudia & Keyel, Alexander C. & Salecker, Jan & Kisel, Yael & Meyer, Katrin M. & Corre, Marife D. & Faust, Heiko & Hess, Bastian & Knohl, Alexander & Kreft, Holger & Meijide, Ana & Nurdiansya, 2015. "Ecosystem functions of oil palm plantations - a review," EFForTS Discussion Paper Series 16, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    19. Barros, Hugo de Jesus Leal & Matias, Elke Hellen Fernandes & Reis, Kivia Letícia dos Santos & Silva, Maíra Fernandes Souza & De Oliveira, Danilo Elias & Knoechelmann, Clarissa Mendes & Silva Siqueira,, 2022. "Effect Of Human Disturbances On Ant Community And Amazonian Landscape," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(1), February.
    20. Lucas Schroeder & Mauricio Roberto Veronez & Eniuce Menezes de Souza & Diego Brum & Luiz Gonzaga & Vinicius Francisco Rofatto, 2020. "Respiratory Diseases, Malaria and Leishmaniasis: Temporal and Spatial Association with Fire Occurrences from Knowledge Discovery and Data Mining," IJERPH, MDPI, vol. 17(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:2:d:10.1007_s10668-020-00632-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.