IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v29y2004i2p373-381.html
   My bibliography  Save this article

Quantile estimation of frontier production function

Author

Listed:
  • Cristina Bernini
  • Marzia Freo
  • Attilio Gardini

Abstract

The purpose of the paper is to provide new information on the performance of frontier estimation methods, using data from Italian hotel industry. Quantile regression is also suggested as solution to frontier production function estimation. It is shown that, while the choice of estimation methods among conventional techniques significantly affects the economic analysis, quantile regression provides valuable new information by estimating the whole spectrum of production functions corresponding to different efficiency levels. In addition, the method makes available a coherent framework to analyze the performance of the conventional techiniques. Copyright Springer-Verlag 2004

Suggested Citation

  • Cristina Bernini & Marzia Freo & Attilio Gardini, 2004. "Quantile estimation of frontier production function," Empirical Economics, Springer, vol. 29(2), pages 373-381, May.
  • Handle: RePEc:spr:empeco:v:29:y:2004:i:2:p:373-381
    DOI: 10.1007/s00181-003-0173-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-003-0173-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-003-0173-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernstein, David H. & Parmeter, Christopher F. & Tsionas, Mike G., 2023. "On the performance of the United States nuclear power sector: A Bayesian approach," Energy Economics, Elsevier, vol. 125(C).
    2. Mototsugu Fukushige & Yingxin Shi, 2022. "Quantile regression approach for measuring production inefficiency with empirical application to the primary production sector for the Xinjiang Production and Construction Corps in China," Asia-Pacific Journal of Regional Science, Springer, vol. 6(2), pages 777-805, June.
    3. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    4. Mohammed, Sadick & Abdulai, Awudu, 2021. "Extension Participation and Improved Technology Adoption: Impact on Efficiency and Welfare of Farmers in Ghana," 2021 Conference, August 17-31, 2021, Virtual 315362, International Association of Agricultural Economists.
    5. Chunping Liu & Audrey Laporte & Brian S. Ferguson, 2008. "The quantile regression approach to efficiency measurement: insights from Monte Carlo simulations," Health Economics, John Wiley & Sons, Ltd., vol. 17(9), pages 1073-1087, September.
    6. Cristina Bernini & Andrea Guizzardi, 2010. "Internal and Locational Factors Affecting Hotel Industry Efficiency: Evidence from Italian Business Corporations," Tourism Economics, , vol. 16(4), pages 883-913, December.
    7. Behr, Andreas, 2010. "Quantile regression for robust bank efficiency score estimation," European Journal of Operational Research, Elsevier, vol. 200(2), pages 568-581, January.
    8. Tsionas, Mike G. & Assaf, A. George & Andrikopoulos, Athanasios, 2020. "Quantile stochastic frontier models with endogeneity," Economics Letters, Elsevier, vol. 188(C).
    9. Besstremyannaya, Galina & Dasher, Richard & Golovan, Sergei, 2022. "Quantifying heterogeneity in the relationship between R&D intensity and growth at innovative Japanese firms: A quantile regression approach," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 67, pages 27-45.
    10. Wang, Yongqiao & Wang, Shouyang & Dang, Chuangyin & Ge, Wenxiu, 2014. "Nonparametric quantile frontier estimation under shape restriction," European Journal of Operational Research, Elsevier, vol. 232(3), pages 671-678.
    11. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    12. Galina Besstremyannaya, 2014. "The efficiency of labor matching and remuneration reforms: a panel data quantile regression approach with endogenous treatment variables," Working Papers w0206, New Economic School (NES).
    13. Zangin Zeebari & Kristofer Månsson & Pär Sjölander & Magnus Söderberg, 2023. "Regularized conditional estimators of unit inefficiency in stochastic frontier analysis, with application to electricity distribution market," Journal of Productivity Analysis, Springer, vol. 59(1), pages 79-97, February.
    14. Montresor, Sandro & Vezzani, Antonio, 2015. "The production function of top R&D investors: Accounting for size and sector heterogeneity with quantile estimations," Research Policy, Elsevier, vol. 44(2), pages 381-393.
    15. Galina Besstremyannaya, 2014. "The efficiency of labor matching and remuneration reforms: a panel data quantile regression approach with endogenous treatment variables," Working Papers w0206, Center for Economic and Financial Research (CEFIR).
    16. Besstremyannaya, Galina, 2017. "Heterogeneous effect of the global financial crisis and the Great East Japan Earthquake on costs of Japanese banks," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 66-89.
    17. Galina Besstremyannaya, 2015. "Heterogeneous effect of residency matching and prospective payment on labor returns and hospital scale economies," Discussion Papers 15-001, Stanford Institute for Economic Policy Research.
    18. Hung-pin Lai & Cliff J. Huang & Tsu-Tan Fu, 2020. "Estimation of the production profile and metafrontier technology gap: a quantile approach," Empirical Economics, Springer, vol. 58(6), pages 2709-2731, June.
    19. Mamatzakis, E & Koutsomanoli-Filippaki, Anastasia & Pasiouras, Fotios, 2012. "A quantile regression approach to bank efficiency measurement," MPRA Paper 51879, University Library of Munich, Germany.
    20. E. Fusco & R. Benedetti & F. Vidoli, 2023. "Stochastic frontier estimation through parametric modelling of quantile regression coefficients," Empirical Economics, Springer, vol. 64(2), pages 869-896, February.
    21. Zhang, Ning & Huang, Xuhui & Liu, Yunxiao, 2021. "The cost of low-carbon transition for China's coal-fired power plants: A quantile frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    22. Monje, Juan Cabas & Sidhoum, Amer Ait & Gil, Jose M., 2021. "Investigating Technical Efficiency of Spanish Pig Farming: A Quantile Regression Approach," 2021 Conference, August 17-31, 2021, Virtual 315196, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:29:y:2004:i:2:p:373-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.